import pytest from spacy.attrs import LEMMA from spacy.vocab import Vocab from spacy.tokens import Doc, Token from ..util import get_doc def test_doc_retokenize_merge(en_tokenizer): text = "WKRO played songs by the beach boys all night" attrs = {"tag": "NAMED", "lemma": "LEMMA", "ent_type": "TYPE"} doc = en_tokenizer(text) assert len(doc) == 9 with doc.retokenize() as retokenizer: retokenizer.merge(doc[4:7], attrs=attrs) retokenizer.merge(doc[7:9], attrs=attrs) assert len(doc) == 6 assert doc[4].text == "the beach boys" assert doc[4].text_with_ws == "the beach boys " assert doc[4].tag_ == "NAMED" assert doc[5].text == "all night" assert doc[5].text_with_ws == "all night" assert doc[5].tag_ == "NAMED" def test_doc_retokenize_merge_children(en_tokenizer): """Test that attachments work correctly after merging.""" text = "WKRO played songs by the beach boys all night" attrs = {"tag": "NAMED", "lemma": "LEMMA", "ent_type": "TYPE"} doc = en_tokenizer(text) assert len(doc) == 9 with doc.retokenize() as retokenizer: retokenizer.merge(doc[4:7], attrs=attrs) for word in doc: if word.i < word.head.i: assert word in list(word.head.lefts) elif word.i > word.head.i: assert word in list(word.head.rights) def test_doc_retokenize_merge_hang(en_tokenizer): text = "through North and South Carolina" doc = en_tokenizer(text) with doc.retokenize() as retokenizer: retokenizer.merge(doc[3:5], attrs={"lemma": "", "ent_type": "ORG"}) retokenizer.merge(doc[1:2], attrs={"lemma": "", "ent_type": "ORG"}) def test_doc_retokenize_retokenizer(en_tokenizer): doc = en_tokenizer("WKRO played songs by the beach boys all night") with doc.retokenize() as retokenizer: retokenizer.merge(doc[4:7]) assert len(doc) == 7 assert doc[4].text == "the beach boys" def test_doc_retokenize_retokenizer_attrs(en_tokenizer): doc = en_tokenizer("WKRO played songs by the beach boys all night") # test both string and integer attributes and values attrs = {LEMMA: "boys", "ENT_TYPE": doc.vocab.strings["ORG"]} with doc.retokenize() as retokenizer: retokenizer.merge(doc[4:7], attrs=attrs) assert len(doc) == 7 assert doc[4].text == "the beach boys" assert doc[4].lemma_ == "boys" assert doc[4].ent_type_ == "ORG" def test_doc_retokenize_lex_attrs(en_tokenizer): """Test that lexical attributes can be changed (see #2390).""" doc = en_tokenizer("WKRO played beach boys songs") assert not any(token.is_stop for token in doc) with doc.retokenize() as retokenizer: retokenizer.merge(doc[2:4], attrs={"LEMMA": "boys", "IS_STOP": True}) assert doc[2].text == "beach boys" assert doc[2].lemma_ == "boys" assert doc[2].is_stop new_doc = Doc(doc.vocab, words=["beach boys"]) assert new_doc[0].is_stop def test_doc_retokenize_spans_merge_tokens(en_tokenizer): text = "Los Angeles start." heads = [1, 1, 0, -1] tokens = en_tokenizer(text) doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads) assert len(doc) == 4 assert doc[0].head.text == "Angeles" assert doc[1].head.text == "start" with doc.retokenize() as retokenizer: attrs = {"tag": "NNP", "lemma": "Los Angeles", "ent_type": "GPE"} retokenizer.merge(doc[0:2], attrs=attrs) assert len(doc) == 3 assert doc[0].text == "Los Angeles" assert doc[0].head.text == "start" assert doc[0].ent_type_ == "GPE" def test_doc_retokenize_spans_merge_tokens_default_attrs(en_tokenizer): text = "The players start." heads = [1, 1, 0, -1] tokens = en_tokenizer(text) doc = get_doc( tokens.vocab, words=[t.text for t in tokens], tags=["DT", "NN", "VBZ", "."], pos=["DET", "NOUN", "VERB", "PUNCT"], heads=heads, ) assert len(doc) == 4 assert doc[0].text == "The" assert doc[0].tag_ == "DT" assert doc[0].pos_ == "DET" with doc.retokenize() as retokenizer: retokenizer.merge(doc[0:2]) assert len(doc) == 3 assert doc[0].text == "The players" assert doc[0].tag_ == "NN" assert doc[0].pos_ == "NOUN" assert doc[0].lemma_ == "The players" doc = get_doc( tokens.vocab, words=[t.text for t in tokens], tags=["DT", "NN", "VBZ", "."], pos=["DET", "NOUN", "VERB", "PUNCT"], heads=heads, ) assert len(doc) == 4 assert doc[0].text == "The" assert doc[0].tag_ == "DT" assert doc[0].pos_ == "DET" with doc.retokenize() as retokenizer: retokenizer.merge(doc[0:2]) retokenizer.merge(doc[2:4]) assert len(doc) == 2 assert doc[0].text == "The players" assert doc[0].tag_ == "NN" assert doc[0].pos_ == "NOUN" assert doc[0].lemma_ == "The players" assert doc[1].text == "start ." assert doc[1].tag_ == "VBZ" assert doc[1].pos_ == "VERB" assert doc[1].lemma_ == "start ." def test_doc_retokenize_spans_merge_heads(en_tokenizer): text = "I found a pilates class near work." heads = [1, 0, 2, 1, -3, -1, -1, -6] tokens = en_tokenizer(text) doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads) assert len(doc) == 8 with doc.retokenize() as retokenizer: attrs = {"tag": doc[4].tag_, "lemma": "pilates class", "ent_type": "O"} retokenizer.merge(doc[3:5], attrs=attrs) assert len(doc) == 7 assert doc[0].head.i == 1 assert doc[1].head.i == 1 assert doc[2].head.i == 3 assert doc[3].head.i == 1 assert doc[4].head.i in [1, 3] assert doc[5].head.i == 4 def test_doc_retokenize_spans_merge_non_disjoint(en_tokenizer): text = "Los Angeles start." doc = en_tokenizer(text) with pytest.raises(ValueError): with doc.retokenize() as retokenizer: retokenizer.merge( doc[0:2], attrs={"tag": "NNP", "lemma": "Los Angeles", "ent_type": "GPE"}, ) retokenizer.merge( doc[0:1], attrs={"tag": "NNP", "lemma": "Los Angeles", "ent_type": "GPE"}, ) def test_doc_retokenize_span_np_merges(en_tokenizer): text = "displaCy is a parse tool built with Javascript" heads = [1, 0, 2, 1, -3, -1, -1, -1] tokens = en_tokenizer(text) doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads) assert doc[4].head.i == 1 with doc.retokenize() as retokenizer: attrs = {"tag": "NP", "lemma": "tool", "ent_type": "O"} retokenizer.merge(doc[2:5], attrs=attrs) assert doc[2].head.i == 1 text = "displaCy is a lightweight and modern dependency parse tree visualization tool built with CSS3 and JavaScript." heads = [1, 0, 8, 3, -1, -2, 4, 3, 1, 1, -9, -1, -1, -1, -1, -2, -15] tokens = en_tokenizer(text) doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads) with doc.retokenize() as retokenizer: for ent in doc.ents: attrs = {"tag": ent.label_, "lemma": ent.lemma_, "ent_type": ent.label_} retokenizer.merge(ent, attrs=attrs) text = "One test with entities like New York City so the ents list is not void" heads = [1, 11, -1, -1, -1, 1, 1, -3, 4, 2, 1, 1, 0, -1, -2] tokens = en_tokenizer(text) doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads) with doc.retokenize() as retokenizer: for ent in doc.ents: retokenizer.merge(ent) def test_doc_retokenize_spans_entity_merge(en_tokenizer): # fmt: off text = "Stewart Lee is a stand up comedian who lives in England and loves Joe Pasquale.\n" heads = [1, 1, 0, 1, 2, -1, -4, 1, -2, -1, -1, -3, -10, 1, -2, -13, -1] tags = ["NNP", "NNP", "VBZ", "DT", "VB", "RP", "NN", "WP", "VBZ", "IN", "NNP", "CC", "VBZ", "NNP", "NNP", ".", "SP"] ents = [(0, 2, "PERSON"), (10, 11, "GPE"), (13, 15, "PERSON")] # fmt: on tokens = en_tokenizer(text) doc = get_doc( tokens.vocab, words=[t.text for t in tokens], heads=heads, tags=tags, ents=ents ) assert len(doc) == 17 with doc.retokenize() as retokenizer: for ent in doc.ents: ent_type = max(w.ent_type_ for w in ent) attrs = {"lemma": ent.root.lemma_, "ent_type": ent_type} retokenizer.merge(ent, attrs=attrs) # check looping is ok assert len(doc) == 15 def test_doc_retokenize_spans_entity_merge_iob(en_vocab): # Test entity IOB stays consistent after merging words = ["a", "b", "c", "d", "e"] doc = Doc(Vocab(), words=words) doc.ents = [ (doc.vocab.strings.add("ent-abc"), 0, 3), (doc.vocab.strings.add("ent-d"), 3, 4), ] assert doc[0].ent_iob_ == "B" assert doc[1].ent_iob_ == "I" assert doc[2].ent_iob_ == "I" assert doc[3].ent_iob_ == "B" with doc.retokenize() as retokenizer: retokenizer.merge(doc[0:2]) assert len(doc) == len(words) - 1 assert doc[0].ent_iob_ == "B" assert doc[1].ent_iob_ == "I" # Test that IOB stays consistent with provided IOB words = ["a", "b", "c", "d", "e"] doc = Doc(Vocab(), words=words) with doc.retokenize() as retokenizer: attrs = {"ent_type": "ent-abc", "ent_iob": 1} retokenizer.merge(doc[0:3], attrs=attrs) retokenizer.merge(doc[3:5], attrs=attrs) assert doc[0].ent_iob_ == "B" assert doc[1].ent_iob_ == "I" # if no parse/heads, the first word in the span is the root and provides # default values words = ["a", "b", "c", "d", "e", "f", "g", "h", "i"] doc = Doc(Vocab(), words=words) doc.ents = [ (doc.vocab.strings.add("ent-de"), 3, 5), (doc.vocab.strings.add("ent-fg"), 5, 7), ] assert doc[3].ent_iob_ == "B" assert doc[4].ent_iob_ == "I" assert doc[5].ent_iob_ == "B" assert doc[6].ent_iob_ == "I" with doc.retokenize() as retokenizer: retokenizer.merge(doc[2:4]) retokenizer.merge(doc[4:6]) retokenizer.merge(doc[7:9]) assert len(doc) == 6 assert doc[3].ent_iob_ == "B" assert doc[3].ent_type_ == "ent-de" assert doc[4].ent_iob_ == "B" assert doc[4].ent_type_ == "ent-fg" # if there is a parse, span.root provides default values words = ["a", "b", "c", "d", "e", "f", "g", "h", "i"] heads = [0, -1, 1, -3, -4, -5, -1, -7, -8] ents = [(3, 5, "ent-de"), (5, 7, "ent-fg")] deps = ["dep"] * len(words) en_vocab.strings.add("ent-de") en_vocab.strings.add("ent-fg") en_vocab.strings.add("dep") doc = get_doc(en_vocab, words=words, heads=heads, deps=deps, ents=ents) assert doc[2:4].root == doc[3] # root of 'c d' is d assert doc[4:6].root == doc[4] # root is 'e f' is e with doc.retokenize() as retokenizer: retokenizer.merge(doc[2:4]) retokenizer.merge(doc[4:6]) retokenizer.merge(doc[7:9]) assert len(doc) == 6 assert doc[2].ent_iob_ == "B" assert doc[2].ent_type_ == "ent-de" assert doc[3].ent_iob_ == "I" assert doc[3].ent_type_ == "ent-de" assert doc[4].ent_iob_ == "B" assert doc[4].ent_type_ == "ent-fg" # check that B is preserved if span[start] is B words = ["a", "b", "c", "d", "e", "f", "g", "h", "i"] heads = [0, -1, 1, 1, -4, -5, -1, -7, -8] ents = [(3, 5, "ent-de"), (5, 7, "ent-de")] deps = ["dep"] * len(words) doc = get_doc(en_vocab, words=words, heads=heads, deps=deps, ents=ents) with doc.retokenize() as retokenizer: retokenizer.merge(doc[3:5]) retokenizer.merge(doc[5:7]) assert len(doc) == 7 assert doc[3].ent_iob_ == "B" assert doc[3].ent_type_ == "ent-de" assert doc[4].ent_iob_ == "B" assert doc[4].ent_type_ == "ent-de" def test_doc_retokenize_spans_sentence_update_after_merge(en_tokenizer): # fmt: off text = "Stewart Lee is a stand up comedian. He lives in England and loves Joe Pasquale." heads = [1, 1, 0, 1, 2, -1, -4, -5, 1, 0, -1, -1, -3, -4, 1, -2, -7] deps = ['compound', 'nsubj', 'ROOT', 'det', 'amod', 'prt', 'attr', 'punct', 'nsubj', 'ROOT', 'prep', 'pobj', 'cc', 'conj', 'compound', 'dobj', 'punct'] # fmt: on tokens = en_tokenizer(text) doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps) sent1, sent2 = list(doc.sents) init_len = len(sent1) init_len2 = len(sent2) with doc.retokenize() as retokenizer: attrs = {"lemma": "none", "ent_type": "none"} retokenizer.merge(doc[0:2], attrs=attrs) retokenizer.merge(doc[-2:], attrs=attrs) assert len(sent1) == init_len - 1 assert len(sent2) == init_len2 - 1 def test_doc_retokenize_spans_subtree_size_check(en_tokenizer): # fmt: off text = "Stewart Lee is a stand up comedian who lives in England and loves Joe Pasquale" heads = [1, 1, 0, 1, 2, -1, -4, 1, -2, -1, -1, -3, -10, 1, -2] deps = ["compound", "nsubj", "ROOT", "det", "amod", "prt", "attr", "nsubj", "relcl", "prep", "pobj", "cc", "conj", "compound", "dobj"] # fmt: on tokens = en_tokenizer(text) doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps) sent1 = list(doc.sents)[0] init_len = len(list(sent1.root.subtree)) with doc.retokenize() as retokenizer: attrs = {"lemma": "none", "ent_type": "none"} retokenizer.merge(doc[0:2], attrs=attrs) assert len(list(sent1.root.subtree)) == init_len - 1 def test_doc_retokenize_merge_extension_attrs(en_vocab): Token.set_extension("a", default=False, force=True) Token.set_extension("b", default="nothing", force=True) doc = Doc(en_vocab, words=["hello", "world", "!"]) # Test regular merging with doc.retokenize() as retokenizer: attrs = {"lemma": "hello world", "_": {"a": True, "b": "1"}} retokenizer.merge(doc[0:2], attrs=attrs) assert doc[0].lemma_ == "hello world" assert doc[0]._.a is True assert doc[0]._.b == "1" # Test bulk merging doc = Doc(en_vocab, words=["hello", "world", "!", "!"]) with doc.retokenize() as retokenizer: retokenizer.merge(doc[0:2], attrs={"_": {"a": True, "b": "1"}}) retokenizer.merge(doc[2:4], attrs={"_": {"a": None, "b": "2"}}) assert doc[0]._.a is True assert doc[0]._.b == "1" assert doc[1]._.a is None assert doc[1]._.b == "2" @pytest.mark.parametrize("underscore_attrs", [{"a": "x"}, {"b": "x"}, {"c": "x"}, [1]]) def test_doc_retokenize_merge_extension_attrs_invalid(en_vocab, underscore_attrs): Token.set_extension("a", getter=lambda x: x, force=True) Token.set_extension("b", method=lambda x: x, force=True) doc = Doc(en_vocab, words=["hello", "world", "!"]) attrs = {"_": underscore_attrs} with pytest.raises(ValueError): with doc.retokenize() as retokenizer: retokenizer.merge(doc[0:2], attrs=attrs) def test_doc_retokenizer_merge_lex_attrs(en_vocab): """Test that retokenization also sets attributes on the lexeme if they're lexical attributes. For example, if a user sets IS_STOP, it should mean that "all tokens with that lexeme" are marked as a stop word, so the ambiguity here is acceptable. Also see #2390. """ # Test regular merging doc = Doc(en_vocab, words=["hello", "world", "!"]) assert not any(t.is_stop for t in doc) with doc.retokenize() as retokenizer: retokenizer.merge(doc[0:2], attrs={"lemma": "hello world", "is_stop": True}) assert doc[0].lemma_ == "hello world" assert doc[0].is_stop # Test bulk merging doc = Doc(en_vocab, words=["eins", "zwei", "!", "!"]) assert not any(t.like_num for t in doc) assert not any(t.is_stop for t in doc) with doc.retokenize() as retokenizer: retokenizer.merge(doc[0:2], attrs={"like_num": True}) retokenizer.merge(doc[2:4], attrs={"is_stop": True}) assert doc[0].like_num assert doc[1].is_stop assert not doc[0].is_stop assert not doc[1].like_num def test_retokenize_skip_duplicates(en_vocab): """Test that the retokenizer automatically skips duplicate spans instead of complaining about overlaps. See #3687.""" doc = Doc(en_vocab, words=["hello", "world", "!"]) with doc.retokenize() as retokenizer: retokenizer.merge(doc[0:2]) retokenizer.merge(doc[0:2]) assert len(doc) == 2 assert doc[0].text == "hello world"