# coding: utf-8 from __future__ import unicode_literals from ..parts_of_speech cimport NOUN, PROPN, PRON, VERB, AUX def english_noun_chunks(obj): """ Detect base noun phrases from a dependency parse. Works on both Doc and Span. """ labels = ['nsubj', 'dobj', 'nsubjpass', 'pcomp', 'pobj', 'dative', 'appos', 'attr', 'ROOT'] doc = obj.doc # Ensure works on both Doc and Span. np_deps = [doc.vocab.strings[label] for label in labels] conj = doc.vocab.strings['conj'] np_label = doc.vocab.strings['NP'] seen = set() for i, word in enumerate(obj): if word.pos not in (NOUN, PROPN, PRON): continue # Prevent nested chunks from being produced if word.i in seen: continue if word.dep in np_deps: if any(w.i in seen for w in word.subtree): continue seen.update(j for j in range(word.left_edge.i, word.i+1)) yield word.left_edge.i, word.i+1, np_label elif word.dep == conj: head = word.head while head.dep == conj and head.head.i < head.i: head = head.head # If the head is an NP, and we're coordinated to it, we're an NP if head.dep in np_deps: if any(w.i in seen for w in word.subtree): continue seen.update(j for j in range(word.left_edge.i, word.i+1)) yield word.left_edge.i, word.i+1, np_label # this iterator extracts spans headed by NOUNs starting from the left-most # syntactic dependent until the NOUN itself # for close apposition and measurement construction, the span is sometimes # extended to the right of the NOUN # example: "eine Tasse Tee" (a cup (of) tea) returns "eine Tasse Tee" and not # just "eine Tasse", same for "das Thema Familie" def german_noun_chunks(obj): labels = ['sb', 'oa', 'da', 'nk', 'mo', 'ag', 'ROOT', 'root', 'cj', 'pd', 'og', 'app'] doc = obj.doc # Ensure works on both Doc and Span. np_label = doc.vocab.strings['NP'] np_deps = set(doc.vocab.strings[label] for label in labels) close_app = doc.vocab.strings['nk'] rbracket = 0 for i, word in enumerate(obj): if i < rbracket: continue if word.pos in (NOUN, PROPN, PRON) and word.dep in np_deps: rbracket = word.i+1 # try to extend the span to the right # to capture close apposition/measurement constructions for rdep in doc[word.i].rights: if rdep.pos in (NOUN, PROPN) and rdep.dep == close_app: rbracket = rdep.i+1 yield word.left_edge.i, rbracket, np_label def es_noun_chunks(obj): doc = obj.doc np_label = doc.vocab.strings['NP'] left_labels = ['det', 'fixed', 'neg'] #['nunmod', 'det', 'appos', 'fixed'] right_labels = ['flat', 'fixed', 'compound', 'neg'] stop_labels = ['punct'] np_left_deps = [doc.vocab.strings[label] for label in left_labels] np_right_deps = [doc.vocab.strings[label] for label in right_labels] stop_deps = [doc.vocab.strings[label] for label in stop_labels] def next_token(token): try: return token.nbor() except: return None def noun_bounds(root): def is_verb_token(token): return token.pos in [VERB, AUX] left_bound = root for token in reversed(list(root.lefts)): if token.dep in np_left_deps: left_bound = token right_bound = root for token in root.rights: if (token.dep in np_right_deps): left, right = noun_bounds(token) if list(filter(lambda t: is_verb_token(t) or t.dep in stop_deps, doc[left_bound.i: right.i])): break else: right_bound = right return left_bound, right_bound token = doc[0] while token and token.i < len(doc): if token.pos in [PROPN, NOUN, PRON]: left, right = noun_bounds(token) yield left.i, right.i+1, np_label token = right token = next_token(token) CHUNKERS = {'en': english_noun_chunks, 'de': german_noun_chunks, 'es': es_noun_chunks, None: english_noun_chunks, '': english_noun_chunks}