from __future__ import unicode_literals import pytest import spacy from spacy.attrs import ORTH @pytest.mark.models def test_issue429(): nlp = spacy.load('en', parser=False) def merge_phrases(matcher, doc, i, matches): if i != len(matches) - 1: return None spans = [(ent_id, label, doc[start:end]) for ent_id, label, start, end in matches] for ent_id, label, span in spans: span.merge('NNP' if label else span.root.tag_, span.text, nlp.vocab.strings[label]) doc = nlp('a') nlp.matcher.add('key', label='TEST', attrs={}, specs=[[{ORTH: 'a'}]], on_match=merge_phrases) doc = nlp.tokenizer('a b c') nlp.tagger(doc) nlp.matcher(doc) for word in doc: print(word.text, word.ent_iob_, word.ent_type_) nlp.entity(doc)