from libcpp.vector cimport vector from libc.stdint cimport uint32_t from libc.stdint cimport int64_t from libc.stdint cimport uint64_t import numpy cimport cython #cdef class Serializer: # def __init__(self, Vocab vocab): # pass # # def dump(self, Doc tokens, file_): # pass # # Format # # - Total number of bytes in message (32 bit int) # # - Words, terminating in an EOL symbol, huffman coded ~12 bits per word # # - Spaces ~1 bit per word # # - Parse: Huffman coded head offset / dep label / POS tag / entity IOB tag # # combo. ? bits per word. 40 * 80 * 40 * 12 = 1.5m symbol vocab cdef struct Node: float prob int left int right cdef class HuffmanCodec: cdef vector[Node] nodes cdef vector[vector[bint]] codes cdef vector[bint] oov_code cdef uint64_t oov_symbol cdef float[:] probs cdef dict table def __init__(self, symbols, probs): self.table = {} for i, symbol in enumerate(symbols): self.table[symbol] = i self.probs = probs self.codes.resize(len(probs)) populate_nodes(self.nodes, probs) cdef vector[bint] path assign_codes(self.nodes, self.codes, len(self.nodes) - 1, path) def encode(self, uint64_t[:] sequence): bits = [] cdef uint64_t symbol for symbol in sequence: i = self.table.get(symbol) if i == 0: raise Exception("Unseen symbol: %s" % symbol) else: code = self.codes[i] bits.extend(code) return bits def decode(self, bits): symbols = [] node = self.nodes.back() for bit in bits: branch = node.right if bit else node.left if branch >= 0: node = self.nodes.at(branch) else: symbols.append(-(branch + 1)) node = self.nodes.back() return symbols property strings: @cython.boundscheck(False) @cython.wraparound(False) @cython.nonecheck(False) def __get__(self): output = [] cdef int i, j for i in range(self.codes.size()): code = [] for j in range(self.codes[i].size()): if self.codes[i][j]: code += '1' else: code += '0' output.append(code) return output @cython.boundscheck(False) @cython.wraparound(False) @cython.nonecheck(False) cdef int populate_nodes(vector[Node]& nodes, float[:] probs) except -1: assert len(probs) >= 3 cdef int size = len(probs) cdef int i = size - 1 cdef int j = 0 while i >= 0 or (j+1) < nodes.size(): if i < 0: _cover_two_nodes(nodes, j) j += 2 elif j >= nodes.size(): _cover_two_words(nodes, i, i-1, probs[i] + probs[i-1]) i -= 2 elif i >= 1 and (j == nodes.size() or probs[i-1] < nodes[j].prob): _cover_two_words(nodes, i, i-1, probs[i] + probs[i-1]) i -= 2 elif (j+1) < nodes.size() and nodes[j+1].prob < probs[i]: _cover_two_nodes(nodes, j) j += 2 else: _cover_one_word_one_node(nodes, j, i, probs[i]) i -= 1 j += 1 return 0 cdef int _cover_two_nodes(vector[Node]& nodes, int j) nogil: cdef Node node node.left = j node.right = j+1 node.prob = nodes[j].prob + nodes[j+1].prob nodes.push_back(node) cdef int _cover_one_word_one_node(vector[Node]& nodes, int j, int id_, float prob) nogil: cdef Node node # Encode leaves as negative integers, where the integer is the index of the # word in the vocabulary. cdef int64_t leaf_id = - (id_ + 1) cdef float new_prob = prob + nodes[j].prob if prob < nodes[j].prob: node.left = leaf_id node.right = j node.prob = new_prob else: node.left = j node.right = leaf_id node.prob = new_prob nodes.push_back(node) cdef int _cover_two_words(vector[Node]& nodes, int id1, int id2, float prob) nogil: cdef Node node node.left = -(id1+1) node.right = -(id2+1) node.prob = prob nodes.push_back(node) cdef int assign_codes(vector[Node]& nodes, vector[vector[bint]]& codes, int i, vector[bint] path) except -1: cdef vector[bint] left_path = path cdef vector[bint] right_path = path left_path.push_back(0) right_path.push_back(1) # Assign down left branch if nodes[i].left >= 0: assign_codes(nodes, codes, nodes[i].left, left_path) else: # Leaf on left id_ = -(nodes[i].left + 1) codes[id_] = left_path # Assign down right branch if nodes[i].right >= 0: assign_codes(nodes, codes, nodes[i].right, right_path) else: # Leaf on right id_ = -(nodes[i].right + 1) codes[id_] = right_path