# cython: profile=True from preshed.maps cimport PreshMap from preshed.counter cimport PreshCounter from .vocab cimport EMPTY_LEXEME from .typedefs cimport attr_id_t, attr_t from .typedefs cimport LEMMA from .typedefs cimport ID, SIC, DENSE, SHAPE, PREFIX, SUFFIX, LENGTH, CLUSTER, POS_TYPE from .typedefs cimport POS, LEMMA cimport cython import numpy as np cimport numpy as np DEF PADDING = 5 cdef int bounds_check(int i, int length, int padding) except -1: if (i + padding) < 0: raise IndexError if (i - padding) >= length: raise IndexError cdef attr_t get_token_attr(const TokenC* token, attr_id_t feat_name) nogil: if feat_name == LEMMA: return token.lemma elif feat_name == POS: return token.pos else: return get_lex_attr(token.lex, feat_name) cdef attr_t get_lex_attr(const Lexeme* lex, attr_id_t feat_name) nogil: if feat_name < (sizeof(flags_t) * 8): return check_flag(lex, feat_name) elif feat_name == ID: return lex.id elif feat_name == SIC: return lex.sic elif feat_name == DENSE: return lex.dense elif feat_name == SHAPE: return lex.shape elif feat_name == PREFIX: return lex.prefix elif feat_name == SUFFIX: return lex.suffix elif feat_name == LENGTH: return lex.length elif feat_name == CLUSTER: return lex.cluster elif feat_name == POS_TYPE: return lex.pos_type else: return 0 cdef class Tokens: """Access and set annotations onto some text. """ def __init__(self, Vocab vocab, string_length=0): self.vocab = vocab if string_length >= 3: size = int(string_length / 3.0) else: size = 5 self.mem = Pool() # Guarantee self.lex[i-x], for any i >= 0 and x < padding is in bounds # However, we need to remember the true starting places, so that we can # realloc. data_start = self.mem.alloc(size + (PADDING*2), sizeof(TokenC)) cdef int i for i in range(size + (PADDING*2)): data_start[i].lex = &EMPTY_LEXEME self.data = data_start + PADDING self.max_length = size self.length = 0 def __getitem__(self, i): """Retrieve a token. Returns: token (Token): """ bounds_check(i, self.length, PADDING) return Token(self, i) def __iter__(self): """Iterate over the tokens. Yields: token (Token): """ for i in range(self.length): yield self[i] def __len__(self): return self.length cdef int push_back(self, int idx, LexemeOrToken lex_or_tok) except -1: if self.length == self.max_length: self._realloc(self.length * 2) cdef TokenC* t = &self.data[self.length] if LexemeOrToken is TokenC_ptr: t[0] = lex_or_tok[0] else: t.lex = lex_or_tok t.idx = idx self.length += 1 return idx + t.lex.length @cython.boundscheck(False) cpdef np.ndarray[long, ndim=2] to_array(self, object attr_ids): """Given a list of M attribute IDs, export the tokens to a numpy ndarray of shape N*M, where N is the length of the sentence. Arguments: attr_ids (list[int]): A list of attribute ID ints. Returns: feat_array (numpy.ndarray[long, ndim=2]): A feature matrix, with one row per word, and one column per attribute indicated in the input attr_ids. """ cdef int i, j cdef attr_id_t feature cdef np.ndarray[long, ndim=2] output output = np.ndarray(shape=(self.length, len(attr_ids)), dtype=int) for i in range(self.length): for j, feature in enumerate(attr_ids): output[i, j] = get_token_attr(&self.data[i], feature) return output def count_by(self, attr_id_t attr_id): """Produce a dict of {attribute (int): count (ints)} frequencies, keyed by the values of the given attribute ID. >>> from spacy.en import English, attrs >>> nlp = English() >>> tokens = nlp(u'apple apple orange banana') >>> tokens.count_by(attrs.SIC) {12800L: 1, 11880L: 2, 7561L: 1} >>> tokens.to_array([attrs.SIC]) array([[11880], [11880], [ 7561], [12800]]) """ cdef int i cdef attr_t attr cdef size_t count cdef PreshCounter counts = PreshCounter(2 ** 8) for i in range(self.length): attr = get_token_attr(&self.data[i], attr_id) counts.inc(attr, 1) return dict(counts) def _realloc(self, new_size): self.max_length = new_size n = new_size + (PADDING * 2) # What we're storing is a "padded" array. We've jumped forward PADDING # places, and are storing the pointer to that. This way, we can access # words out-of-bounds, and get out-of-bounds markers. # Now that we want to realloc, we need the address of the true start, # so we jump the pointer back PADDING places. cdef TokenC* data_start = self.data - PADDING data_start = self.mem.realloc(data_start, n * sizeof(TokenC)) self.data = data_start + PADDING cdef int i for i in range(self.length, self.max_length + PADDING): self.data[i].lex = &EMPTY_LEXEME @cython.freelist(64) cdef class Token: """An individual token. Internally, the Token is a tuple (i, tokens) --- it delegates to the Tokens object. """ def __init__(self, Tokens tokens, int i): self._seq = tokens self.i = i def __unicode__(self): cdef const TokenC* t = &self._seq.data[self.i] cdef int end_idx = t.idx + t.lex.length if self.i + 1 == self._seq.length: return self.string if end_idx == t[1].idx: return self.string else: return self.string + ' ' def __len__(self): """The number of unicode code-points in the original string. Returns: length (int): """ return self._seq.data[self.i].lex.length property idx: """The index into the original string at which the token starts. The following is supposed to always be true: >>> original_string[token.idx:token.idx len(token) == token.string """ def __get__(self): return self._seq.data[self.i].idx property cluster: """The Brown cluster ID of the word: en.wikipedia.org/wiki/Brown_clustering Similar words have better-than-chance likelihood of having similar cluster IDs, although the clustering is quite noisy. Cluster IDs make good features, and help to make models slightly more robust to domain variation. A common trick is to use only the first N bits of a cluster ID in a feature, as the more general part of the hierarchical clustering is often more accurate than the lower categories. To assist in this, I encode the cluster IDs little-endian, to allow a simple bit-mask: >>> six_bits = cluster & (2**6 - 1) """ def __get__(self): return self._seq.data[self.i].lex.cluster property string: """The unicode string of the word, with no whitespace padding.""" def __get__(self): cdef const TokenC* t = &self._seq.data[self.i] if t.lex.sic == 0: return '' cdef bytes utf8string = self._seq.vocab.strings[t.lex.sic] return utf8string.decode('utf8') property lemma: """The unicode string of the word's lemma. If no part-of-speech tag is assigned, the most common part-of-speech tag of the word is used. """ def __get__(self): cdef const TokenC* t = &self._seq.data[self.i] if t.lemma == 0: return self.string cdef bytes utf8string = self._seq.vocab.strings[t.lemma] return utf8string.decode('utf8') property dep_tag: """The ID integer of the word's dependency label. If no parse has been assigned, defaults to 0. """ def __get__(self): return self._seq.data[self.i].dep_tag property pos: """The ID integer of the word's part-of-speech tag, from the 13-tag Google Universal Tag Set. Constants for this tag set are available in spacy.typedefs. """ def __get__(self): return self._seq.data[self.i].pos property fine_pos: """The ID integer of the word's fine-grained part-of-speech tag, as assigned by the tagger model. Fine-grained tags include morphological information, and other distinctions, and allow a more accurate tagger to be trained. """ def __get__(self): return self._seq.data[self.i].fine_pos property sic: def __get__(self): return self._seq.data[self.i].lex.sic property head: """The token predicted by the parser to be the head of the current token.""" def __get__(self): cdef const TokenC* t = &self._seq.data[self.i] return Token(self._seq, self.i + t.head)