# coding: utf-8 from __future__ import unicode_literals import pytest from spacy.vocab import Vocab from spacy.tokens import Doc from ..util import get_doc def test_doc_split(en_vocab): words = ["LosAngeles", "start", "."] heads = [1, 1, 0] doc = get_doc(en_vocab, words=words, heads=heads) assert len(doc) == 3 assert len(str(doc)) == 19 assert doc[0].head.text == "start" assert doc[1].head.text == "." with doc.retokenize() as retokenizer: retokenizer.split( doc[0], ["Los", "Angeles"], [(doc[0], 1), doc[1]], attrs={ "tag": ["NNP"] * 2, "lemma": ["Los", "Angeles"], "ent_type": ["GPE"] * 2, }, ) assert len(doc) == 4 assert doc[0].text == "Los" assert doc[0].head.text == "Angeles" assert doc[0].idx == 0 assert doc[1].idx == 3 assert doc[1].text == "Angeles" assert doc[1].head.text == "start" assert doc[2].text == "start" assert doc[2].head.text == "." assert doc[3].text == "." assert doc[3].head.text == "." assert len(str(doc)) == 19 def test_split_dependencies(en_vocab): doc = Doc(en_vocab, words=["LosAngeles", "start", "."]) dep1 = doc.vocab.strings.add("amod") dep2 = doc.vocab.strings.add("subject") with doc.retokenize() as retokenizer: retokenizer.split( doc[0], ["Los", "Angeles"], [(doc[0], 1), doc[1]], attrs={"dep": [dep1, dep2]}, ) assert doc[0].dep == dep1 assert doc[1].dep == dep2 def test_split_heads_error(en_vocab): doc = Doc(en_vocab, words=["LosAngeles", "start", "."]) # Not enough heads with pytest.raises(ValueError): with doc.retokenize() as retokenizer: retokenizer.split(doc[0], ["Los", "Angeles"], [doc[1]]) # Too many heads with pytest.raises(ValueError): with doc.retokenize() as retokenizer: retokenizer.split(doc[0], ["Los", "Angeles"], [doc[1], doc[1], doc[1]]) def test_spans_entity_merge_iob(): # Test entity IOB stays consistent after merging words = ["abc", "d", "e"] doc = Doc(Vocab(), words=words) doc.ents = [(doc.vocab.strings.add("ent-abcd"), 0, 2)] assert doc[0].ent_iob_ == "B" assert doc[1].ent_iob_ == "I" with doc.retokenize() as retokenizer: retokenizer.split(doc[0], ["a", "b", "c"], [(doc[0], 1), (doc[0], 2), doc[1]]) assert doc[0].ent_iob_ == "B" assert doc[1].ent_iob_ == "I" assert doc[2].ent_iob_ == "I" assert doc[3].ent_iob_ == "I" def test_spans_sentence_update_after_merge(en_vocab): # fmt: off words = ["StewartLee", "is", "a", "stand", "up", "comedian", ".", "He", "lives", "in", "England", "and", "loves", "JoePasquale", "."] heads = [1, 0, 1, 2, -1, -4, -5, 1, 0, -1, -1, -3, -4, 1, -2] deps = ["nsubj", "ROOT", "det", "amod", "prt", "attr", "punct", "nsubj", "ROOT", "prep", "pobj", "cc", "conj", "compound", "punct"] # fmt: on doc = get_doc(en_vocab, words=words, heads=heads, deps=deps) sent1, sent2 = list(doc.sents) init_len = len(sent1) init_len2 = len(sent2) with doc.retokenize() as retokenizer: retokenizer.split( doc[0], ["Stewart", "Lee"], [(doc[0], 1), doc[1]], attrs={"dep": ["compound", "nsubj"]}, ) retokenizer.split( doc[13], ["Joe", "Pasquale"], [(doc[13], 1), doc[12]], attrs={"dep": ["compound", "dobj"]}, ) sent1, sent2 = list(doc.sents) assert len(sent1) == init_len + 1 assert len(sent2) == init_len2 + 1 def test_split_orths_mismatch(en_vocab): """Test that the regular retokenizer.split raises an error if the orths don't match the original token text. There might still be a method that allows this, but for the default use cases, merging and splitting should always conform with spaCy's non-destructive tokenization policy. Otherwise, it can lead to very confusing and unexpected results. """ doc = Doc(en_vocab, words=["LosAngeles", "start", "."]) with pytest.raises(ValueError): with doc.retokenize() as retokenizer: retokenizer.split(doc[0], ["L", "A"], [(doc[0], 0), (doc[0], 0)])