# coding: utf-8
from __future__ import unicode_literals
"""Demonstrate how to build a knowledge base from WikiData and run an Entity Linking algorithm.
"""
import re
import json
import spacy
import datetime
import bz2
from spacy.kb import KnowledgeBase
# TODO: remove hardcoded paths
WIKIDATA_JSON = 'C:/Users/Sofie/Documents/data/wikidata/wikidata-20190304-all.json.bz2'
ENWIKI_DUMP = 'C:/Users/Sofie/Documents/data/wikipedia/enwiki-20190320-pages-articles-multistream.xml.bz2'
ENWIKI_INDEX = 'C:/Users/Sofie/Documents/data/wikipedia/enwiki-20190320-pages-articles-multistream-index.txt.bz2'
PRIOR_PROB = 'C:/Users/Sofie/Documents/data/wikipedia/prior_prob.csv'
KB_FILE = 'C:/Users/Sofie/Documents/data/wikipedia/kb'
# these will/should be matched ignoring case
wiki_namespaces = ["b", "betawikiversity", "Book", "c", "Category", "Commons",
"d", "dbdump", "download", "Draft", "Education", "Foundation",
"Gadget", "Gadget definition", "gerrit", "File", "Help", "Image", "Incubator",
"m", "mail", "mailarchive", "media", "MediaWiki", "MediaWiki talk", "Mediawikiwiki",
"MediaZilla", "Meta", "Metawikipedia", "Module",
"mw", "n", "nost", "oldwikisource", "outreach", "outreachwiki", "otrs", "OTRSwiki",
"Portal", "phab", "Phabricator", "Project", "q", "quality", "rev",
"s", "spcom", "Special", "species", "Strategy", "sulutil", "svn",
"Talk", "Template", "Template talk", "Testwiki", "ticket", "TimedText", "Toollabs", "tools", "tswiki",
"User", "User talk", "v", "voy",
"w", "Wikibooks", "Wikidata", "wikiHow", "Wikinvest", "wikilivres", "Wikimedia", "Wikinews",
"Wikipedia", "Wikipedia talk", "Wikiquote", "Wikisource", "Wikispecies", "Wikitech",
"Wikiversity", "Wikivoyage", "wikt", "wiktionary", "wmf", "wmania", "WP"]
map_alias_to_link = dict()
def create_kb(vocab, max_entities_per_alias, min_occ, to_print=False):
kb = KnowledgeBase(vocab=vocab)
id_to_title = _read_wikidata(limit=1000)
title_to_id = {v:k for k,v in id_to_title.items()}
_add_entities(kb,
entities=id_to_title.keys(),
probs=[0.4 for x in id_to_title.keys()],
to_print=to_print)
_add_aliases(kb,
title_to_id=title_to_id,
max_entities_per_alias=max_entities_per_alias,
min_occ=min_occ,
to_print=to_print)
# TODO: read wikipedia texts for entity context
# _read_wikipedia()
if to_print:
print()
print("kb size:", len(kb), kb.get_size_entities(), kb.get_size_aliases())
return kb
def _add_entities(kb, entities, probs, to_print=False):
for entity, prob in zip(entities, probs):
kb.add_entity(entity=entity, prob=prob)
if to_print:
print("added", kb.get_size_entities(), "entities:", kb.get_entity_strings())
def _add_aliases(kb, title_to_id, max_entities_per_alias, min_occ, to_print=False):
wp_titles = title_to_id.keys()
if to_print:
print("wp titles", wp_titles)
# adding aliases with prior probabilities
with open(PRIOR_PROB, mode='r', encoding='utf8') as prior_file:
# skip header
prior_file.readline()
line = prior_file.readline()
# we can read this file sequentially, it's sorted by alias, and then by count
previous_alias = None
total_count = 0
counts = list()
entities = list()
while line:
splits = line.replace('\n', "").split(sep='|')
new_alias = splits[0]
count = int(splits[1])
entity = splits[2]
if new_alias != previous_alias and previous_alias:
# done reading the previous alias --> output
if len(entities) > 0:
selected_entities = list()
prior_probs = list()
for ent_count, ent_string in zip(counts, entities):
if ent_string in wp_titles:
wd_id = title_to_id[ent_string]
p_entity_givenalias = ent_count / total_count
selected_entities.append(wd_id)
prior_probs.append(p_entity_givenalias)
if selected_entities:
kb.add_alias(alias=previous_alias, entities=selected_entities, probabilities=prior_probs)
total_count = 0
counts = list()
entities = list()
total_count += count
if len(entities) < max_entities_per_alias and count >= min_occ:
counts.append(count)
entities.append(entity)
previous_alias = new_alias
line = prior_file.readline()
if to_print:
print("added", kb.get_size_aliases(), "aliases:", kb.get_alias_strings())
def _read_wikidata(limit=None, to_print=False):
""" Read the JSON wiki data """
languages = {'en', 'de'}
prop_filter = {'P31': {'Q5', 'Q15632617'}} # currently defined as OR: one property suffices to be selected
sites = {'enwiki'}
entity_dict = dict()
with bz2.open(WIKIDATA_JSON, mode='rb') as file:
line = file.readline()
cnt = 1
while line and (not limit or cnt < limit):
clean_line = line.strip()
if clean_line.endswith(b","):
clean_line = clean_line[:-1]
if len(clean_line) > 1:
obj = json.loads(clean_line)
keep = False
# filtering records on their properties
# TODO: filter on rank: preferred, normal or deprecated
claims = obj["claims"]
for prop, value_set in prop_filter.items():
claim_property = claims.get(prop, None)
if claim_property:
for cp in claim_property:
cp_id = cp['mainsnak'].get('datavalue', {}).get('value', {}).get('id')
if cp_id in value_set:
keep = True
if keep:
unique_id = obj["id"]
entry_type = obj["type"]
if to_print:
print("ID:", unique_id)
print("type:", entry_type)
# parsing all properties that refer to other entities
for prop, claim_property in claims.items():
cp_dicts = [cp['mainsnak']['datavalue'].get('value') for cp in claim_property if cp['mainsnak'].get('datavalue')]
cp_values = [cp_dict.get('id') for cp_dict in cp_dicts if isinstance(cp_dict, dict) if cp_dict.get('id') is not None]
if cp_values:
if to_print:
print("prop:", prop, cp_values)
entry_sites = obj["sitelinks"]
for site in sites:
site_value = entry_sites.get(site, None)
if site_value:
if to_print:
print(site, ":", site_value['title'])
if site == "enwiki":
entity_dict[unique_id] = site_value['title']
labels = obj["labels"]
if labels:
for lang in languages:
lang_label = labels.get(lang, None)
if lang_label:
if to_print:
print("label (" + lang + "):", lang_label["value"])
descriptions = obj["descriptions"]
if descriptions:
for lang in languages:
lang_descr = descriptions.get(lang, None)
if lang_descr:
if to_print:
print("description (" + lang + "):", lang_descr["value"])
aliases = obj["aliases"]
if aliases:
for lang in languages:
lang_aliases = aliases.get(lang, None)
if lang_aliases:
for item in lang_aliases:
if to_print:
print("alias (" + lang + "):", item["value"])
if to_print:
print()
line = file.readline()
cnt += 1
return entity_dict
def _read_wikipedia_prior_probs():
""" Read the XML wikipedia data and parse out intra-wiki links to estimate prior probabilities
The full file takes about 2h to parse 1100M lines (update printed every 5M lines)
"""
# find the links
link_regex = re.compile(r'\[\[[^\[\]]*\]\]')
# match on interwiki links, e.g. `en:` or `:fr:`
ns_regex = r":?" + "[a-z][a-z]" + ":"
# match on Namespace: optionally preceded by a :
for ns in wiki_namespaces:
ns_regex += "|" + ":?" + ns + ":"
ns_regex = re.compile(ns_regex, re.IGNORECASE)
with bz2.open(ENWIKI_DUMP, mode='rb') as file:
line = file.readline()
cnt = 0
while line:
if cnt % 5000000 == 0:
print(datetime.datetime.now(), "processed", cnt, "lines")
clean_line = line.strip().decode("utf-8")
matches = link_regex.findall(clean_line)
for match in matches:
match = match[2:][:-2].replace("_", " ").strip()
if ns_regex.match(match):
pass # ignore namespaces at the beginning of the string
# this is a simple link, with the alias the same as the mention
elif "|" not in match:
_store_alias(match, match, normalize_alias=True, normalize_entity=True)
# in wiki format, the link is written as [[entity|alias]]
else:
splits = match.split("|")
entity = splits[0].strip()
alias = splits[1].strip()
# specific wiki format [[alias (specification)|]]
if len(alias) == 0 and "(" in entity:
alias = entity.split("(")[0]
_store_alias(alias, entity, normalize_alias=False, normalize_entity=True)
else:
_store_alias(alias, entity, normalize_alias=False, normalize_entity=True)
line = file.readline()
cnt += 1
# write all aliases and their entities and occurrences to file
with open(PRIOR_PROB, mode='w', encoding='utf8') as outputfile:
outputfile.write("alias" + "|" + "count" + "|" + "entity" + "\n")
for alias, alias_dict in sorted(map_alias_to_link.items(), key=lambda x: x[0]):
for entity, count in sorted(alias_dict.items(), key=lambda x: x[1], reverse=True):
outputfile.write(alias + "|" + str(count) + "|" + entity + "\n")
def _store_alias(alias, entity, normalize_alias=False, normalize_entity=True):
alias = alias.strip()
entity = entity.strip()
# remove everything after # as this is not part of the title but refers to a specific paragraph
if normalize_entity:
# wikipedia titles are always capitalized
entity = capitalize_first(entity.split("#")[0])
if normalize_alias:
alias = alias.split("#")[0]
if alias and entity:
alias_dict = map_alias_to_link.get(alias, dict())
entity_count = alias_dict.get(entity, 0)
alias_dict[entity] = entity_count + 1
map_alias_to_link[alias] = alias_dict
def _read_wikipedia():
""" Read the XML wikipedia data """
with bz2.open(ENWIKI_DUMP, mode='rb') as file:
line = file.readline()
cnt = 1
article_text = ""
article_title = None
article_id = None
reading_text = False
while line and cnt < 1000000:
clean_line = line.strip().decode("utf-8")
# Start reading new page
if clean_line == "":
article_text = ""
article_title = None
article_id = 342
# finished reading this page
elif clean_line == "":
if article_id:
_store_wp_article(article_id, article_title, article_text.strip())
# start reading text within a page
if ")\d*(?=)", clean_line)
if ids:
article_id = ids[0]
# read the title of this article
titles = re.findall(r"(?<=).*(?=)", clean_line)
if titles:
article_title = titles[0].strip()
line = file.readline()
cnt += 1
def _store_wp_article(article_id, article_title, article_text):
pass
print("WP article", article_id, ":", article_title)
print(article_text)
print(_get_clean_wp_text(article_text))
print()
def _get_clean_wp_text(article_text):
# TODO: compile the regular expressions
# remove Category and File statements
clean_text = re.sub(r'\[\[Category:[^\[]*]]', '', article_text)
print("1", clean_text)
clean_text = re.sub(r'\[\[File:[^\[]*]]', '', clean_text) # TODO: this doesn't work yet
print("2", clean_text)
# remove bolding markup
clean_text = re.sub('\'\'\'', '', clean_text)
clean_text = re.sub('\'\'', '', clean_text)
# remove nested {{info}} statements by removing the inner/smallest ones first and iterating
try_again = True
previous_length = len(clean_text)
while try_again:
clean_text = re.sub('{[^{]*?}', '', clean_text) # non-greedy match excluding a nested {
if len(clean_text) < previous_length:
try_again = True
else:
try_again = False
previous_length = len(clean_text)
# remove multiple spaces
while ' ' in clean_text:
clean_text = re.sub(' ', ' ', clean_text)
# remove simple interwiki links (no alternative name)
clean_text = re.sub('\[\[([^|]*?)]]', r'\1', clean_text)
# remove simple interwiki links by picking the alternative name
clean_text = re.sub(r'\[\[[^|]*?\|([^|]*?)]]', r'\1', clean_text)
# remove HTML comments
clean_text = re.sub('<!--[^!]*-->', '', clean_text)
return clean_text
def add_el(kb, nlp):
el_pipe = nlp.create_pipe(name='entity_linker', config={"kb": kb})
nlp.add_pipe(el_pipe, last=True)
text = "In The Hitchhiker's Guide to the Galaxy, written by Douglas Adams, " \
"Douglas reminds us to always bring our towel. " \
"The main character in Doug's novel is the man Arthur Dent, but Douglas doesn't write about George Washington."
doc = nlp(text)
print()
for token in doc:
print("token", token.text, token.ent_type_, token.ent_kb_id_)
print()
for ent in doc.ents:
print("ent", ent.text, ent.label_, ent.kb_id_)
def capitalize_first(text):
if not text:
return None
result = text[0].capitalize()
if len(result) > 0:
result += text[1:]
return result
if __name__ == "__main__":
# STEP 1 : create prior probabilities from WP
# run only once !
# _read_wikipedia_prior_probs()
# STEP 2 : create KB
# nlp = spacy.load('en_core_web_sm')
# my_kb = create_kb(nlp.vocab, max_entities_per_alias=10, min_occ=5, to_print=True)
# STEP 3 : write KB to file
nlp1 = spacy.load('en_core_web_sm')
kb1 = KnowledgeBase(vocab=nlp1.vocab)
kb1.add_entity(entity="Q53", prob=0.33)
kb1.add_entity(entity="Q17", prob=0.1)
kb1.add_entity(entity="Q007", prob=0.7)
kb1.add_entity(entity="Q44", prob=0.4)
print("kb1 size:", len(kb1), kb1.get_size_entities(), kb1.get_size_aliases())
print("dumping kb1")
kb1.dump(KB_FILE)
# STEP 4 : read KB back in from file
nlp3 = spacy.load('en_core_web_sm')
kb3 = KnowledgeBase(vocab=nlp3.vocab)
kb3.load_bulk(KB_FILE)
print("loading kb3")
print("kb3 size:", len(kb3), kb3.get_size_entities(), kb3.get_size_aliases())
# STEP 5 : actually use the EL functionality
# add_el(my_kb, nlp)