# coding: utf8 from __future__ import unicode_literals from ...symbols import NOUN, PROPN, PRON from ...errors import Errors def noun_chunks(obj): """ Detect base noun phrases from a dependency parse. Works on both Doc and Span. """ labels = [ "nsubj", "nsubj:pass", "dobj", "obj", "iobj", "ROOT", "appos", "nmod", "nmod:poss", ] doc = obj.doc # Ensure works on both Doc and Span. if not doc.is_parsed: raise ValueError(Errors.E029) np_deps = [doc.vocab.strings[label] for label in labels] conj = doc.vocab.strings.add("conj") np_label = doc.vocab.strings.add("NP") seen = set() for i, word in enumerate(obj): if word.pos not in (NOUN, PROPN, PRON): continue # Prevent nested chunks from being produced if word.i in seen: continue if word.dep in np_deps: if any(w.i in seen for w in word.subtree): continue seen.update(j for j in range(word.left_edge.i, word.right_edge.i + 1)) yield word.left_edge.i, word.right_edge.i + 1, np_label elif word.dep == conj: head = word.head while head.dep == conj and head.head.i < head.i: head = head.head # If the head is an NP, and we're coordinated to it, we're an NP if head.dep in np_deps: if any(w.i in seen for w in word.subtree): continue seen.update(j for j in range(word.left_edge.i, word.right_edge.i + 1)) yield word.left_edge.i, word.right_edge.i + 1, np_label SYNTAX_ITERATORS = {"noun_chunks": noun_chunks}