import pytest from spacy.tokens import Doc, Span, DocBin from spacy.training import Example from spacy.training.converters.conllu_to_docs import conllu_to_docs from spacy.lang.en import English from spacy.kb import KnowledgeBase from spacy.vocab import Vocab from spacy.language import Language from spacy.util import ensure_path, load_model_from_path import numpy import pickle from thinc.api import NumpyOps, get_current_ops from ..util import make_tempdir @pytest.mark.issue(4528) def test_issue4528(en_vocab): """Test that user_data is correctly serialized in DocBin.""" doc = Doc(en_vocab, words=["hello", "world"]) doc.user_data["foo"] = "bar" # This is how extension attribute values are stored in the user data doc.user_data[("._.", "foo", None, None)] = "bar" doc_bin = DocBin(store_user_data=True) doc_bin.add(doc) doc_bin_bytes = doc_bin.to_bytes() new_doc_bin = DocBin(store_user_data=True).from_bytes(doc_bin_bytes) new_doc = list(new_doc_bin.get_docs(en_vocab))[0] assert new_doc.user_data["foo"] == "bar" assert new_doc.user_data[("._.", "foo", None, None)] == "bar" @pytest.mark.parametrize( "text,words", [("A'B C", ["A", "'", "B", "C"]), ("A-B", ["A-B"])] ) def test_gold_misaligned(en_tokenizer, text, words): doc = en_tokenizer(text) Example.from_dict(doc, {"words": words}) @pytest.mark.issue(4651) def test_issue4651_with_phrase_matcher_attr(): """Test that the EntityRuler PhraseMatcher is deserialized correctly using the method from_disk when the EntityRuler argument phrase_matcher_attr is specified. """ text = "Spacy is a python library for nlp" nlp = English() patterns = [{"label": "PYTHON_LIB", "pattern": "spacy", "id": "spaCy"}] ruler = nlp.add_pipe("entity_ruler", config={"phrase_matcher_attr": "LOWER"}) ruler.add_patterns(patterns) doc = nlp(text) res = [(ent.text, ent.label_, ent.ent_id_) for ent in doc.ents] nlp_reloaded = English() with make_tempdir() as d: file_path = d / "entityruler" ruler.to_disk(file_path) nlp_reloaded.add_pipe("entity_ruler").from_disk(file_path) doc_reloaded = nlp_reloaded(text) res_reloaded = [(ent.text, ent.label_, ent.ent_id_) for ent in doc_reloaded.ents] assert res == res_reloaded @pytest.mark.issue(4651) def test_issue4651_without_phrase_matcher_attr(): """Test that the EntityRuler PhraseMatcher is deserialized correctly using the method from_disk when the EntityRuler argument phrase_matcher_attr is not specified. """ text = "Spacy is a python library for nlp" nlp = English() patterns = [{"label": "PYTHON_LIB", "pattern": "spacy", "id": "spaCy"}] ruler = nlp.add_pipe("entity_ruler") ruler.add_patterns(patterns) doc = nlp(text) res = [(ent.text, ent.label_, ent.ent_id_) for ent in doc.ents] nlp_reloaded = English() with make_tempdir() as d: file_path = d / "entityruler" ruler.to_disk(file_path) nlp_reloaded.add_pipe("entity_ruler").from_disk(file_path) doc_reloaded = nlp_reloaded(text) res_reloaded = [(ent.text, ent.label_, ent.ent_id_) for ent in doc_reloaded.ents] assert res == res_reloaded @pytest.mark.issue(4665) def test_issue4665(): """ conllu_to_docs should not raise an exception if the HEAD column contains an underscore """ input_data = """ 1 [ _ PUNCT -LRB- _ _ punct _ _ 2 This _ DET DT _ _ det _ _ 3 killing _ NOUN NN _ _ nsubj _ _ 4 of _ ADP IN _ _ case _ _ 5 a _ DET DT _ _ det _ _ 6 respected _ ADJ JJ _ _ amod _ _ 7 cleric _ NOUN NN _ _ nmod _ _ 8 will _ AUX MD _ _ aux _ _ 9 be _ AUX VB _ _ aux _ _ 10 causing _ VERB VBG _ _ root _ _ 11 us _ PRON PRP _ _ iobj _ _ 12 trouble _ NOUN NN _ _ dobj _ _ 13 for _ ADP IN _ _ case _ _ 14 years _ NOUN NNS _ _ nmod _ _ 15 to _ PART TO _ _ mark _ _ 16 come _ VERB VB _ _ acl _ _ 17 . _ PUNCT . _ _ punct _ _ 18 ] _ PUNCT -RRB- _ _ punct _ _ """ conllu_to_docs(input_data) @pytest.mark.issue(4674) def test_issue4674(): """Test that setting entities with overlapping identifiers does not mess up IO""" nlp = English() kb = KnowledgeBase(nlp.vocab, entity_vector_length=3) vector1 = [0.9, 1.1, 1.01] vector2 = [1.8, 2.25, 2.01] with pytest.warns(UserWarning): kb.set_entities( entity_list=["Q1", "Q1"], freq_list=[32, 111], vector_list=[vector1, vector2], ) assert kb.get_size_entities() == 1 # dumping to file & loading back in with make_tempdir() as d: dir_path = ensure_path(d) if not dir_path.exists(): dir_path.mkdir() file_path = dir_path / "kb" kb.to_disk(str(file_path)) kb2 = KnowledgeBase(nlp.vocab, entity_vector_length=3) kb2.from_disk(str(file_path)) assert kb2.get_size_entities() == 1 @pytest.mark.skip(reason="API change: disable just disables, new exclude arg") @pytest.mark.issue(4707) def test_issue4707(): """Tests that disabled component names are also excluded from nlp.from_disk by default when loading a model. """ nlp = English() nlp.add_pipe("sentencizer") nlp.add_pipe("entity_ruler") assert nlp.pipe_names == ["sentencizer", "entity_ruler"] exclude = ["tokenizer", "sentencizer"] with make_tempdir() as tmpdir: nlp.to_disk(tmpdir, exclude=exclude) new_nlp = load_model_from_path(tmpdir, disable=exclude) assert "sentencizer" not in new_nlp.pipe_names assert "entity_ruler" in new_nlp.pipe_names @pytest.mark.issue(4725) def test_issue4725_1(): """Ensure the pickling of the NER goes well""" vocab = Vocab(vectors_name="test_vocab_add_vector") nlp = English(vocab=vocab) config = { "update_with_oracle_cut_size": 111, } ner = nlp.create_pipe("ner", config=config) with make_tempdir() as tmp_path: with (tmp_path / "ner.pkl").open("wb") as file_: pickle.dump(ner, file_) assert ner.cfg["update_with_oracle_cut_size"] == 111 with (tmp_path / "ner.pkl").open("rb") as file_: ner2 = pickle.load(file_) assert ner2.cfg["update_with_oracle_cut_size"] == 111 @pytest.mark.issue(4725) def test_issue4725_2(): if isinstance(get_current_ops, NumpyOps): # ensures that this runs correctly and doesn't hang or crash because of the global vectors # if it does crash, it's usually because of calling 'spawn' for multiprocessing (e.g. on Windows), # or because of issues with pickling the NER (cf test_issue4725_1) vocab = Vocab(vectors_name="test_vocab_add_vector") data = numpy.ndarray((5, 3), dtype="f") data[0] = 1.0 data[1] = 2.0 vocab.set_vector("cat", data[0]) vocab.set_vector("dog", data[1]) nlp = English(vocab=vocab) nlp.add_pipe("ner") nlp.initialize() docs = ["Kurt is in London."] * 10 for _ in nlp.pipe(docs, batch_size=2, n_process=2): pass @pytest.mark.issue(4849) def test_issue4849(): nlp = English() patterns = [ {"label": "PERSON", "pattern": "joe biden", "id": "joe-biden"}, {"label": "PERSON", "pattern": "bernie sanders", "id": "bernie-sanders"}, ] ruler = nlp.add_pipe("entity_ruler", config={"phrase_matcher_attr": "LOWER"}) ruler.add_patterns(patterns) text = """ The left is starting to take aim at Democratic front-runner Joe Biden. Sen. Bernie Sanders joined in her criticism: "There is no 'middle ground' when it comes to climate policy." """ # USING 1 PROCESS count_ents = 0 for doc in nlp.pipe([text], n_process=1): count_ents += len([ent for ent in doc.ents if ent.ent_id > 0]) assert count_ents == 2 # USING 2 PROCESSES if isinstance(get_current_ops, NumpyOps): count_ents = 0 for doc in nlp.pipe([text], n_process=2): count_ents += len([ent for ent in doc.ents if ent.ent_id > 0]) assert count_ents == 2 @Language.factory("my_pipe") class CustomPipe: def __init__(self, nlp, name="my_pipe"): self.name = name Span.set_extension("my_ext", getter=self._get_my_ext) Doc.set_extension("my_ext", default=None) def __call__(self, doc): gathered_ext = [] for sent in doc.sents: sent_ext = self._get_my_ext(sent) sent._.set("my_ext", sent_ext) gathered_ext.append(sent_ext) doc._.set("my_ext", "\n".join(gathered_ext)) return doc @staticmethod def _get_my_ext(span): return str(span.end) @pytest.mark.issue(4903) def test_issue4903(): """Ensure that this runs correctly and doesn't hang or crash on Windows / macOS.""" nlp = English() nlp.add_pipe("sentencizer") nlp.add_pipe("my_pipe", after="sentencizer") text = ["I like bananas.", "Do you like them?", "No, I prefer wasabi."] if isinstance(get_current_ops(), NumpyOps): docs = list(nlp.pipe(text, n_process=2)) assert docs[0].text == "I like bananas." assert docs[1].text == "Do you like them?" assert docs[2].text == "No, I prefer wasabi." @pytest.mark.issue(4924) def test_issue4924(): nlp = Language() example = Example.from_dict(nlp.make_doc(""), {}) nlp.evaluate([example])