# coding: utf-8 from __future__ import unicode_literals import spacy from spacy.attrs import ORTH def merge_phrases(matcher, doc, i, matches): ''' Merge a phrase. We have to be careful here because we'll change the token indices. To avoid problems, merge all the phrases once we're called on the last match. ''' if i != len(matches)-1: return None # Get Span objects spans = [(ent_id, label, doc[start : end]) for ent_id, label, start, end in matches] for ent_id, label, span in spans: span.merge('NNP' if label else span.root.tag_, span.text, doc.vocab.strings[label]) def test_entity_ID_assignment(): nlp = spacy.en.English() text = """The golf club is broken""" doc = nlp(text) golf_pattern = [ { ORTH: "golf"}, { ORTH: "club"} ] matcher = spacy.matcher.Matcher(nlp.vocab) matcher.add_entity('Sport_Equipment', on_match = merge_phrases) matcher.add_pattern("Sport_Equipment", golf_pattern, label = 'Sport_Equipment') match = matcher(doc) entities = list(doc.ents) assert entities != [] #assertion 1 assert entities[0].label != 0 #assertion 2