# coding: utf-8 from __future__ import unicode_literals import pytest import numpy from spacy.tokens import Doc from spacy.vocab import Vocab from spacy.attrs import LEMMA from spacy.errors import ModelsWarning from ..util import get_doc @pytest.mark.parametrize("text", [["one", "two", "three"]]) def test_doc_api_compare_by_string_position(en_vocab, text): doc = Doc(en_vocab, words=text) # Get the tokens in this order, so their ID ordering doesn't match the idx token3 = doc[-1] token2 = doc[-2] token1 = doc[-1] token1, token2, token3 = doc assert token1 < token2 < token3 assert not token1 > token2 assert token2 > token1 assert token2 <= token3 assert token3 >= token1 def test_doc_api_getitem(en_tokenizer): text = "Give it back! He pleaded." tokens = en_tokenizer(text) assert tokens[0].text == "Give" assert tokens[-1].text == "." with pytest.raises(IndexError): tokens[len(tokens)] def to_str(span): return "/".join(token.text for token in span) span = tokens[1:1] assert not to_str(span) span = tokens[1:4] assert to_str(span) == "it/back/!" span = tokens[1:4:1] assert to_str(span) == "it/back/!" with pytest.raises(ValueError): tokens[1:4:2] with pytest.raises(ValueError): tokens[1:4:-1] span = tokens[-3:6] assert to_str(span) == "He/pleaded" span = tokens[4:-1] assert to_str(span) == "He/pleaded" span = tokens[-5:-3] assert to_str(span) == "back/!" span = tokens[5:4] assert span.start == span.end == 5 and not to_str(span) span = tokens[4:-3] assert span.start == span.end == 4 and not to_str(span) span = tokens[:] assert to_str(span) == "Give/it/back/!/He/pleaded/." span = tokens[4:] assert to_str(span) == "He/pleaded/." span = tokens[:4] assert to_str(span) == "Give/it/back/!" span = tokens[:-3] assert to_str(span) == "Give/it/back/!" span = tokens[-3:] assert to_str(span) == "He/pleaded/." span = tokens[4:50] assert to_str(span) == "He/pleaded/." span = tokens[-50:4] assert to_str(span) == "Give/it/back/!" span = tokens[-50:-40] assert span.start == span.end == 0 and not to_str(span) span = tokens[40:50] assert span.start == span.end == 7 and not to_str(span) span = tokens[1:4] assert span[0].orth_ == "it" subspan = span[:] assert to_str(subspan) == "it/back/!" subspan = span[:2] assert to_str(subspan) == "it/back" subspan = span[1:] assert to_str(subspan) == "back/!" subspan = span[:-1] assert to_str(subspan) == "it/back" subspan = span[-2:] assert to_str(subspan) == "back/!" subspan = span[1:2] assert to_str(subspan) == "back" subspan = span[-2:-1] assert to_str(subspan) == "back" subspan = span[-50:50] assert to_str(subspan) == "it/back/!" subspan = span[50:-50] assert subspan.start == subspan.end == 4 and not to_str(subspan) @pytest.mark.parametrize( "text", ["Give it back! He pleaded.", " Give it back! He pleaded. "] ) def test_doc_api_serialize(en_tokenizer, text): tokens = en_tokenizer(text) new_tokens = Doc(tokens.vocab).from_bytes(tokens.to_bytes()) assert tokens.text == new_tokens.text assert [t.text for t in tokens] == [t.text for t in new_tokens] assert [t.orth for t in tokens] == [t.orth for t in new_tokens] new_tokens = Doc(tokens.vocab).from_bytes( tokens.to_bytes(tensor=False), tensor=False ) assert tokens.text == new_tokens.text assert [t.text for t in tokens] == [t.text for t in new_tokens] assert [t.orth for t in tokens] == [t.orth for t in new_tokens] new_tokens = Doc(tokens.vocab).from_bytes( tokens.to_bytes(sentiment=False), sentiment=False ) assert tokens.text == new_tokens.text assert [t.text for t in tokens] == [t.text for t in new_tokens] assert [t.orth for t in tokens] == [t.orth for t in new_tokens] def test_doc_api_set_ents(en_tokenizer): text = "I use goggle chrone to surf the web" tokens = en_tokenizer(text) assert len(tokens.ents) == 0 tokens.ents = [(tokens.vocab.strings["PRODUCT"], 2, 4)] assert len(list(tokens.ents)) == 1 assert [t.ent_iob for t in tokens] == [0, 0, 3, 1, 0, 0, 0, 0] assert tokens.ents[0].label_ == "PRODUCT" assert tokens.ents[0].start == 2 assert tokens.ents[0].end == 4 def test_doc_api_merge(en_tokenizer): text = "WKRO played songs by the beach boys all night" # merge 'The Beach Boys' doc = en_tokenizer(text) assert len(doc) == 9 doc.merge( doc[4].idx, doc[6].idx + len(doc[6]), tag="NAMED", lemma="LEMMA", ent_type="TYPE", ) assert len(doc) == 7 assert doc[4].text == "the beach boys" assert doc[4].text_with_ws == "the beach boys " assert doc[4].tag_ == "NAMED" # merge 'all night' doc = en_tokenizer(text) assert len(doc) == 9 doc.merge( doc[7].idx, doc[8].idx + len(doc[8]), tag="NAMED", lemma="LEMMA", ent_type="TYPE", ) assert len(doc) == 8 assert doc[7].text == "all night" assert doc[7].text_with_ws == "all night" # merge both with bulk merge doc = en_tokenizer(text) assert len(doc) == 9 with doc.retokenize() as retokenizer: retokenizer.merge( doc[4:7], attrs={"tag": "NAMED", "lemma": "LEMMA", "ent_type": "TYPE"} ) retokenizer.merge( doc[7:9], attrs={"tag": "NAMED", "lemma": "LEMMA", "ent_type": "TYPE"} ) assert len(doc) == 6 assert doc[4].text == "the beach boys" assert doc[4].text_with_ws == "the beach boys " assert doc[4].tag_ == "NAMED" assert doc[5].text == "all night" assert doc[5].text_with_ws == "all night" assert doc[5].tag_ == "NAMED" # merge both with bulk merge doc = en_tokenizer(text) assert len(doc) == 9 with doc.retokenize() as retokenizer: retokenizer.merge( doc[4:7], attrs={"tag": "NAMED", "lemma": "LEMMA", "ent_type": "TYPE"} ) retokenizer.merge( doc[7:9], attrs={"tag": "NAMED", "lemma": "LEMMA", "ent_type": "TYPE"} ) assert len(doc) == 6 assert doc[4].text == "the beach boys" assert doc[4].text_with_ws == "the beach boys " assert doc[4].tag_ == "NAMED" assert doc[5].text == "all night" assert doc[5].text_with_ws == "all night" assert doc[5].tag_ == "NAMED" def test_doc_api_merge_children(en_tokenizer): """Test that attachments work correctly after merging.""" text = "WKRO played songs by the beach boys all night" doc = en_tokenizer(text) assert len(doc) == 9 doc.merge( doc[4].idx, doc[6].idx + len(doc[6]), tag="NAMED", lemma="LEMMA", ent_type="TYPE", ) for word in doc: if word.i < word.head.i: assert word in list(word.head.lefts) elif word.i > word.head.i: assert word in list(word.head.rights) def test_doc_api_merge_hang(en_tokenizer): text = "through North and South Carolina" doc = en_tokenizer(text) doc.merge(18, 32, tag="", lemma="", ent_type="ORG") doc.merge(8, 32, tag="", lemma="", ent_type="ORG") def test_doc_api_retokenizer(en_tokenizer): doc = en_tokenizer("WKRO played songs by the beach boys all night") with doc.retokenize() as retokenizer: retokenizer.merge(doc[4:7]) assert len(doc) == 7 assert doc[4].text == "the beach boys" def test_doc_api_retokenizer_attrs(en_tokenizer): doc = en_tokenizer("WKRO played songs by the beach boys all night") # test both string and integer attributes and values attrs = {LEMMA: "boys", "ENT_TYPE": doc.vocab.strings["ORG"]} with doc.retokenize() as retokenizer: retokenizer.merge(doc[4:7], attrs=attrs) assert len(doc) == 7 assert doc[4].text == "the beach boys" assert doc[4].lemma_ == "boys" assert doc[4].ent_type_ == "ORG" @pytest.mark.xfail def test_doc_api_retokenizer_lex_attrs(en_tokenizer): """Test that lexical attributes can be changed (see #2390).""" doc = en_tokenizer("WKRO played beach boys songs") assert not any(token.is_stop for token in doc) with doc.retokenize() as retokenizer: retokenizer.merge(doc[2:4], attrs={"LEMMA": "boys", "IS_STOP": True}) assert doc[2].text == "beach boys" assert doc[2].lemma_ == "boys" assert doc[2].is_stop new_doc = Doc(doc.vocab, words=["beach boys"]) assert new_doc[0].is_stop def test_doc_api_sents_empty_string(en_tokenizer): doc = en_tokenizer("") doc.is_parsed = True sents = list(doc.sents) assert len(sents) == 0 def test_doc_api_runtime_error(en_tokenizer): # Example that caused run-time error while parsing Reddit # fmt: off text = "67% of black households are single parent \n\n72% of all black babies born out of wedlock \n\n50% of all black kids don\u2019t finish high school" deps = ["nsubj", "prep", "amod", "pobj", "ROOT", "amod", "attr", "", "nummod", "prep", "det", "amod", "pobj", "acl", "prep", "prep", "pobj", "", "nummod", "prep", "det", "amod", "pobj", "aux", "neg", "ROOT", "amod", "dobj"] # fmt: on tokens = en_tokenizer(text) doc = get_doc(tokens.vocab, words=[t.text for t in tokens], deps=deps) nps = [] for np in doc.noun_chunks: while len(np) > 1 and np[0].dep_ not in ("advmod", "amod", "compound"): np = np[1:] if len(np) > 1: nps.append( (np.start_char, np.end_char, np.root.tag_, np.text, np.root.ent_type_) ) for np in nps: start, end, tag, lemma, ent_type = np doc.merge(start, end, tag=tag, lemma=lemma, ent_type=ent_type) def test_doc_api_right_edge(en_tokenizer): """Test for bug occurring from Unshift action, causing incorrect right edge""" # fmt: off text = "I have proposed to myself, for the sake of such as live under the government of the Romans, to translate those books into the Greek tongue." heads = [2, 1, 0, -1, -1, -3, 15, 1, -2, -1, 1, -3, -1, -1, 1, -2, -1, 1, -2, -7, 1, -19, 1, -2, -3, 2, 1, -3, -26] # fmt: on tokens = en_tokenizer(text) doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads) assert doc[6].text == "for" subtree = [w.text for w in doc[6].subtree] assert subtree == [ "for", "the", "sake", "of", "such", "as", "live", "under", "the", "government", "of", "the", "Romans", ",", ] assert doc[6].right_edge.text == "," def test_doc_api_has_vector(): vocab = Vocab() vocab.reset_vectors(width=2) vocab.set_vector("kitten", vector=numpy.asarray([0.0, 2.0], dtype="f")) doc = Doc(vocab, words=["kitten"]) assert doc.has_vector def test_doc_api_similarity_match(): doc = Doc(Vocab(), words=["a"]) assert doc.similarity(doc[0]) == 1.0 assert doc.similarity(doc.vocab["a"]) == 1.0 doc2 = Doc(doc.vocab, words=["a", "b", "c"]) with pytest.warns(ModelsWarning): assert doc.similarity(doc2[:1]) == 1.0 assert doc.similarity(doc2) == 0.0 @pytest.mark.parametrize( "sentence,heads,lca_matrix", [ ( "the lazy dog slept", [2, 1, 1, 0], numpy.array([[0, 2, 2, 3], [2, 1, 2, 3], [2, 2, 2, 3], [3, 3, 3, 3]]), ), ( "The lazy dog slept. The quick fox jumped", [2, 1, 1, 0, -1, 2, 1, 1, 0], numpy.array( [ [0, 2, 2, 3, 3, -1, -1, -1, -1], [2, 1, 2, 3, 3, -1, -1, -1, -1], [2, 2, 2, 3, 3, -1, -1, -1, -1], [3, 3, 3, 3, 3, -1, -1, -1, -1], [3, 3, 3, 3, 4, -1, -1, -1, -1], [-1, -1, -1, -1, -1, 5, 7, 7, 8], [-1, -1, -1, -1, -1, 7, 6, 7, 8], [-1, -1, -1, -1, -1, 7, 7, 7, 8], [-1, -1, -1, -1, -1, 8, 8, 8, 8], ] ), ), ], ) def test_lowest_common_ancestor(en_tokenizer, sentence, heads, lca_matrix): tokens = en_tokenizer(sentence) doc = get_doc(tokens.vocab, [t.text for t in tokens], heads=heads) lca = doc.get_lca_matrix() assert (lca == lca_matrix).all() assert lca[1, 1] == 1 assert lca[0, 1] == 2 assert lca[1, 2] == 2