# cython: profile=True # coding: utf8 from __future__ import unicode_literals, print_function import io import re import ujson import random import cytoolz from .syntax import nonproj from .util import ensure_path from . import util from .tokens import Doc def tags_to_entities(tags): entities = [] start = None for i, tag in enumerate(tags): if tag is None: continue if tag.startswith('O'): # TODO: We shouldn't be getting these malformed inputs. Fix this. if start is not None: start = None continue elif tag == '-': continue elif tag.startswith('I'): assert start is not None, tags[:i] continue if tag.startswith('U'): entities.append((tag[2:], i, i)) elif tag.startswith('B'): start = i elif tag.startswith('L'): entities.append((tag[2:], start, i)) start = None else: raise Exception(tag) return entities def merge_sents(sents): m_deps = [[], [], [], [], [], []] m_brackets = [] i = 0 for (ids, words, tags, heads, labels, ner), brackets in sents: m_deps[0].extend(id_ + i for id_ in ids) m_deps[1].extend(words) m_deps[2].extend(tags) m_deps[3].extend(head + i for head in heads) m_deps[4].extend(labels) m_deps[5].extend(ner) m_brackets.extend((b['first'] + i, b['last'] + i, b['label']) for b in brackets) i += len(ids) return [(m_deps, m_brackets)] def align(cand_words, gold_words): cost, edit_path = _min_edit_path(cand_words, gold_words) alignment = [] i_of_gold = 0 for move in edit_path: if move == 'M': alignment.append(i_of_gold) i_of_gold += 1 elif move == 'S': alignment.append(None) i_of_gold += 1 elif move == 'D': alignment.append(None) elif move == 'I': i_of_gold += 1 else: raise Exception(move) return alignment punct_re = re.compile(r'\W') def _min_edit_path(cand_words, gold_words): cdef: Pool mem int i, j, n_cand, n_gold int* curr_costs int* prev_costs # TODO: Fix this --- just do it properly, make the full edit matrix and # then walk back over it... # Preprocess inputs cand_words = [punct_re.sub('', w).lower() for w in cand_words] gold_words = [punct_re.sub('', w).lower() for w in gold_words] if cand_words == gold_words: return 0, ''.join(['M' for _ in gold_words]) mem = Pool() n_cand = len(cand_words) n_gold = len(gold_words) # Levenshtein distance, except we need the history, and we may want different # costs. # Mark operations with a string, and score the history using _edit_cost. previous_row = [] prev_costs = mem.alloc(n_gold + 1, sizeof(int)) curr_costs = mem.alloc(n_gold + 1, sizeof(int)) for i in range(n_gold + 1): cell = '' for j in range(i): cell += 'I' previous_row.append('I' * i) prev_costs[i] = i for i, cand in enumerate(cand_words): current_row = ['D' * (i + 1)] curr_costs[0] = i+1 for j, gold in enumerate(gold_words): if gold.lower() == cand.lower(): s_cost = prev_costs[j] i_cost = curr_costs[j] + 1 d_cost = prev_costs[j + 1] + 1 else: s_cost = prev_costs[j] + 1 i_cost = curr_costs[j] + 1 d_cost = prev_costs[j + 1] + (1 if cand else 0) if s_cost <= i_cost and s_cost <= d_cost: best_cost = s_cost best_hist = previous_row[j] + ('M' if gold == cand else 'S') elif i_cost <= s_cost and i_cost <= d_cost: best_cost = i_cost best_hist = current_row[j] + 'I' else: best_cost = d_cost best_hist = previous_row[j + 1] + 'D' current_row.append(best_hist) curr_costs[j+1] = best_cost previous_row = current_row for j in range(len(gold_words) + 1): prev_costs[j] = curr_costs[j] curr_costs[j] = 0 return prev_costs[n_gold], previous_row[-1] def minibatch(items, size=8): '''Iterate over batches of items. `size` may be an iterator, so that batch-size can vary on each step. ''' items = iter(items) while True: batch_size = next(size) #if hasattr(size, '__next__') else size batch = list(cytoolz.take(int(batch_size), items)) if len(batch) == 0: break yield list(batch) class GoldCorpus(object): """An annotated corpus, using the JSON file format. Manages annotations for tagging, dependency parsing and NER.""" def __init__(self, train_path, dev_path, gold_preproc=True, limit=None): """Create a GoldCorpus. train_path (unicode or Path): File or directory of training data. dev_path (unicode or Path): File or directory of development data. """ self.train_path = util.ensure_path(train_path) self.dev_path = util.ensure_path(dev_path) self.limit = limit self.train_locs = self.walk_corpus(self.train_path) self.dev_locs = self.walk_corpus(self.dev_path) @property def train_tuples(self): i = 0 for loc in self.train_locs: gold_tuples = read_json_file(loc) for item in gold_tuples: yield item i += len(item[1]) if self.limit and i >= self.limit: break @property def dev_tuples(self): i = 0 for loc in self.dev_locs: gold_tuples = read_json_file(loc) for item in gold_tuples: yield item i += 1 if self.limit and i >= self.limit: break def count_train(self): n = 0 i = 0 for raw_text, paragraph_tuples in self.train_tuples: n += sum([len(s[0][1]) for s in paragraph_tuples]) if self.limit and i >= self.limit: break i += len(paragraph_tuples) return n def train_docs(self, nlp, gold_preproc=False, projectivize=False, max_length=None, noise_level=0.0): train_tuples = self.train_tuples if projectivize: train_tuples = nonproj.preprocess_training_data( self.train_tuples) random.shuffle(train_tuples) gold_docs = self.iter_gold_docs(nlp, train_tuples, gold_preproc, max_length=max_length, noise_level=noise_level) yield from gold_docs def dev_docs(self, nlp, gold_preproc=False): gold_docs = self.iter_gold_docs(nlp, self.dev_tuples, gold_preproc) #gold_docs = nlp.preprocess_gold(gold_docs) yield from gold_docs @classmethod def iter_gold_docs(cls, nlp, tuples, gold_preproc, max_length=None, noise_level=0.0): for raw_text, paragraph_tuples in tuples: if gold_preproc: raw_text = None else: paragraph_tuples = merge_sents(paragraph_tuples) docs = cls._make_docs(nlp, raw_text, paragraph_tuples, gold_preproc, noise_level=noise_level) golds = cls._make_golds(docs, paragraph_tuples) for doc, gold in zip(docs, golds): if (not max_length) or len(doc) < max_length: yield doc, gold @classmethod def _make_docs(cls, nlp, raw_text, paragraph_tuples, gold_preproc, noise_level=0.0): if raw_text is not None: raw_text = add_noise(raw_text, noise_level) return [nlp.make_doc(raw_text)] else: return [Doc(nlp.vocab, words=add_noise(sent_tuples[1], noise_level)) for (sent_tuples, brackets) in paragraph_tuples] @classmethod def _make_golds(cls, docs, paragraph_tuples): assert len(docs) == len(paragraph_tuples) if len(docs) == 1: return [GoldParse.from_annot_tuples(docs[0], paragraph_tuples[0][0])] else: return [GoldParse.from_annot_tuples(doc, sent_tuples) for doc, (sent_tuples, brackets) in zip(docs, paragraph_tuples)] @staticmethod def walk_corpus(path): if not path.is_dir(): return [path] paths = [path] locs = [] seen = set() for path in paths: if str(path) in seen: continue seen.add(str(path)) if path.parts[-1].startswith('.'): continue elif path.is_dir(): paths.extend(path.iterdir()) elif path.parts[-1].endswith('.json'): locs.append(path) return locs def add_noise(orig, noise_level): if random.random() >= noise_level: return orig elif type(orig) == list: corrupted = [_corrupt(word, noise_level) for word in orig] corrupted = [w for w in corrupted if w] return corrupted else: return ''.join(_corrupt(c, noise_level) for c in orig) def _corrupt(c, noise_level): if random.random() >= noise_level: return c elif c == ' ': return '\n' elif c == '\n': return ' ' elif c in ['.', "'", "!", "?"]: return '' else: return c.lower() def read_json_file(loc, docs_filter=None, limit=None): loc = ensure_path(loc) if loc.is_dir(): for filename in loc.iterdir(): yield from read_json_file(loc / filename, limit=limit) else: with loc.open('r', encoding='utf8') as file_: docs = ujson.load(file_) if limit is not None: docs = docs[:limit] for doc in docs: if docs_filter is not None and not docs_filter(doc): continue paragraphs = [] for paragraph in doc['paragraphs']: sents = [] for sent in paragraph['sentences']: words = [] ids = [] tags = [] heads = [] labels = [] ner = [] for i, token in enumerate(sent['tokens']): words.append(token['orth']) ids.append(i) tags.append(token.get('tag','-')) heads.append(token.get('head',0) + i) labels.append(token.get('dep','')) # Ensure ROOT label is case-insensitive if labels[-1].lower() == 'root': labels[-1] = 'ROOT' ner.append(token.get('ner', '-')) sents.append([ [ids, words, tags, heads, labels, ner], sent.get('brackets', [])]) if sents: yield [paragraph.get('raw', None), sents] def iob_to_biluo(tags): out = [] curr_label = None tags = list(tags) while tags: out.extend(_consume_os(tags)) out.extend(_consume_ent(tags)) return out def _consume_os(tags): while tags and tags[0] == 'O': yield tags.pop(0) def _consume_ent(tags): if not tags: return [] target = tags.pop(0).replace('B', 'I') length = 1 while tags and tags[0] == target: length += 1 tags.pop(0) label = target[2:] if length == 1: return ['U-' + label] else: start = 'B-' + label end = 'L-' + label middle = ['I-%s' % label for _ in range(1, length - 1)] return [start] + middle + [end] cdef class GoldParse: """Collection for training annotations.""" @classmethod def from_annot_tuples(cls, doc, annot_tuples, make_projective=False): _, words, tags, heads, deps, entities = annot_tuples return cls(doc, words=words, tags=tags, heads=heads, deps=deps, entities=entities, make_projective=make_projective) def __init__(self, doc, annot_tuples=None, words=None, tags=None, heads=None, deps=None, entities=None, make_projective=False, cats=tuple()): """Create a GoldParse. doc (Doc): The document the annotations refer to. words (iterable): A sequence of unicode word strings. tags (iterable): A sequence of strings, representing tag annotations. heads (iterable): A sequence of integers, representing syntactic head offsets. deps (iterable): A sequence of strings, representing the syntactic relation types. entities (iterable): A sequence of named entity annotations, either as BILUO tag strings, or as `(start_char, end_char, label)` tuples, representing the entity positions. cats (iterable): A sequence of labels for text classification. Each label may be a string or an int, or a `(start_char, end_char, label)` tuple, indicating that the label is applied to only part of the document (usually a sentence). Unlike entity annotations, label annotations can overlap, i.e. a single word can be covered by multiple labelled spans. RETURNS (GoldParse): The newly constructed object. """ if words is None: words = [token.text for token in doc] if tags is None: tags = [None for _ in doc] if heads is None: heads = [token.i for token in doc] if deps is None: deps = [None for _ in doc] if entities is None: entities = ['-' for _ in doc] elif len(entities) == 0: entities = ['O' for _ in doc] elif not isinstance(entities[0], basestring): # Assume we have entities specified by character offset. entities = biluo_tags_from_offsets(doc, entities) self.mem = Pool() self.loss = 0 self.length = len(doc) # These are filled by the tagger/parser/entity recogniser self.c.tags = self.mem.alloc(len(doc), sizeof(int)) self.c.heads = self.mem.alloc(len(doc), sizeof(int)) self.c.labels = self.mem.alloc(len(doc), sizeof(attr_t)) self.c.has_dep = self.mem.alloc(len(doc), sizeof(int)) self.c.ner = self.mem.alloc(len(doc), sizeof(Transition)) self.cats = list(cats) self.words = [None] * len(doc) self.tags = [None] * len(doc) self.heads = [None] * len(doc) self.labels = [None] * len(doc) self.ner = [None] * len(doc) self.cand_to_gold = align([t.orth_ for t in doc], words) self.gold_to_cand = align(words, [t.orth_ for t in doc]) annot_tuples = (range(len(words)), words, tags, heads, deps, entities) self.orig_annot = list(zip(*annot_tuples)) for i, gold_i in enumerate(self.cand_to_gold): if doc[i].text.isspace(): self.words[i] = doc[i].text self.tags[i] = 'SP' self.heads[i] = None self.labels[i] = None self.ner[i] = 'O' if gold_i is None: pass else: self.words[i] = words[gold_i] self.tags[i] = tags[gold_i] if heads[gold_i] is None: self.heads[i] = None else: self.heads[i] = self.gold_to_cand[heads[gold_i]] self.labels[i] = deps[gold_i] self.ner[i] = entities[gold_i] cycle = nonproj.contains_cycle(self.heads) if cycle != None: raise Exception("Cycle found: %s" % cycle) if make_projective: proj_heads,_ = nonproj.projectivize(self.heads, self.labels) self.heads = proj_heads def __len__(self): """Get the number of gold-standard tokens. RETURNS (int): The number of gold-standard tokens. """ return self.length @property def is_projective(self): """Whether the provided syntactic annotations form a projective dependency tree. """ return not nonproj.is_nonproj_tree(self.heads) def biluo_tags_from_offsets(doc, entities): """Encode labelled spans into per-token tags, using the Begin/In/Last/Unit/Out scheme (BILUO). doc (Doc): The document that the entity offsets refer to. The output tags will refer to the token boundaries within the document. entities (iterable): A sequence of `(start, end, label)` triples. `start` and `end` should be character-offset integers denoting the slice into the original string. RETURNS (list): A list of unicode strings, describing the tags. Each tag string will be of the form either "", "O" or "{action}-{label}", where action is one of "B", "I", "L", "U". The string "-" is used where the entity offsets don't align with the tokenization in the `Doc` object. The training algorithm will view these as missing values. "O" denotes a non-entity token. "B" denotes the beginning of a multi-token entity, "I" the inside of an entity of three or more tokens, and "L" the end of an entity of two or more tokens. "U" denotes a single-token entity. EXAMPLE: >>> text = 'I like London.' >>> entities = [(len('I like '), len('I like London'), 'LOC')] >>> doc = nlp.tokenizer(text) >>> tags = biluo_tags_from_offsets(doc, entities) >>> assert tags == ['O', 'O', 'U-LOC', 'O'] """ starts = {token.idx: token.i for token in doc} ends = {token.idx+len(token): token.i for token in doc} biluo = ['-' for _ in doc] # Handle entity cases for start_char, end_char, label in entities: start_token = starts.get(start_char) end_token = ends.get(end_char) # Only interested if the tokenization is correct if start_token is not None and end_token is not None: if start_token == end_token: biluo[start_token] = 'U-%s' % label else: biluo[start_token] = 'B-%s' % label for i in range(start_token+1, end_token): biluo[i] = 'I-%s' % label biluo[end_token] = 'L-%s' % label # Now distinguish the O cases from ones where we miss the tokenization entity_chars = set() for start_char, end_char, label in entities: for i in range(start_char, end_char): entity_chars.add(i) for token in doc: for i in range(token.idx, token.idx+len(token)): if i in entity_chars: break else: biluo[token.i] = 'O' return biluo def is_punct_label(label): return label == 'P' or label.lower() == 'punct'