#!/usr/bin/env python # coding: utf-8 """Using the parser to recognise your own semantics spaCy's parser component can be used to trained to predict any type of tree structure over your input text. You can also predict trees over whole documents or chat logs, with connections between the sentence-roots used to annotate discourse structure. In this example, we'll build a message parser for a common "chat intent": finding local businesses. Our message semantics will have the following types of relations: ROOT, PLACE, QUALITY, ATTRIBUTE, TIME, LOCATION. "show me the best hotel in berlin" ('show', 'ROOT', 'show') ('best', 'QUALITY', 'hotel') --> hotel with QUALITY best ('hotel', 'PLACE', 'show') --> show PLACE hotel ('berlin', 'LOCATION', 'hotel') --> hotel with LOCATION berlin """ from __future__ import unicode_literals, print_function import plac import random import spacy from spacy.gold import GoldParse from spacy.tokens import Doc from pathlib import Path # training data: words, head and dependency labels # for no relation, we simply chose an arbitrary dependency label, e.g. '-' TRAIN_DATA = [ ( ['find', 'a', 'cafe', 'with', 'great', 'wifi'], [0, 2, 0, 5, 5, 2], # index of token head ['ROOT', '-', 'PLACE', '-', 'QUALITY', 'ATTRIBUTE'] ), ( ['find', 'a', 'hotel', 'near', 'the', 'beach'], [0, 2, 0, 5, 5, 2], ['ROOT', '-', 'PLACE', 'QUALITY', '-', 'ATTRIBUTE'] ), ( ['find', 'me', 'the', 'closest', 'gym', 'that', "'s", 'open', 'late'], [0, 0, 4, 4, 0, 6, 4, 6, 6], ['ROOT', '-', '-', 'QUALITY', 'PLACE', '-', '-', 'ATTRIBUTE', 'TIME'] ), ( ['show', 'me', 'the', 'cheapest', 'store', 'that', 'sells', 'flowers'], [0, 0, 4, 4, 0, 4, 4, 4], # attach "flowers" to store! ['ROOT', '-', '-', 'QUALITY', 'PLACE', '-', '-', 'PRODUCT'] ), ( ['find', 'a', 'nice', 'restaurant', 'in', 'london'], [0, 3, 3, 0, 3, 3], ['ROOT', '-', 'QUALITY', 'PLACE', '-', 'LOCATION'] ), ( ['show', 'me', 'the', 'coolest', 'hostel', 'in', 'berlin'], [0, 0, 4, 4, 0, 4, 4], ['ROOT', '-', '-', 'QUALITY', 'PLACE', '-', 'LOCATION'] ), ( ['find', 'a', 'good', 'italian', 'restaurant', 'near', 'work'], [0, 4, 4, 4, 0, 4, 5], ['ROOT', '-', 'QUALITY', 'ATTRIBUTE', 'PLACE', 'ATTRIBUTE', 'LOCATION'] ) ] @plac.annotations( model=("Model name. Defaults to blank 'en' model.", "option", "m", str), output_dir=("Optional output directory", "option", "o", Path), n_iter=("Number of training iterations", "option", "n", int)) def main(model=None, output_dir=None, n_iter=100): """Load the model, set up the pipeline and train the parser.""" if model is not None: nlp = spacy.load(model) # load existing spaCy model print("Loaded model '%s'" % model) else: nlp = spacy.blank('en') # create blank Language class print("Created blank 'en' model") # add the parser to the pipeline if it doesn't exist # nlp.create_pipe works for built-ins that are registered with spaCy if 'parser' not in nlp.pipe_names: parser = nlp.create_pipe('parser') nlp.add_pipe(parser, first=True) # otherwise, get it, so we can add labels to it else: parser = nlp.get_pipe('parser') for _, _, deps in TRAIN_DATA: for dep in deps: parser.add_label(dep) other_pipes = [pipe for pipe in nlp.pipe_names if pipe != 'parser'] with nlp.disable_pipes(*other_pipes): # only train parser optimizer = nlp.begin_training(lambda: []) for itn in range(n_iter): random.shuffle(TRAIN_DATA) losses = {} for words, heads, deps in TRAIN_DATA: doc = Doc(nlp.vocab, words=words) gold = GoldParse(doc, heads=heads, deps=deps) nlp.update([doc], [gold], sgd=optimizer, losses=losses) print(losses) # test the trained model test_model(nlp) # save model to output directory if output_dir is not None: output_dir = Path(output_dir) if not output_dir.exists(): output_dir.mkdir() nlp.to_disk(output_dir) print("Saved model to", output_dir) # test the saved model print("Loading from", output_dir) nlp2 = spacy.load(output_dir) test_model(nlp2) def test_model(nlp): texts = ["find a hotel with good wifi", "find me the cheapest gym near work", "show me the best hotel in berlin"] docs = nlp.pipe(texts) for doc in docs: print(doc.text) print([(t.text, t.dep_, t.head.text) for t in doc if t.dep_ != '-']) if __name__ == '__main__': plac.call(main) # Expected output: # find a hotel with good wifi # [ # ('find', 'ROOT', 'find'), # ('hotel', 'PLACE', 'find'), # ('good', 'QUALITY', 'wifi'), # ('wifi', 'ATTRIBUTE', 'hotel') # ] # find me the cheapest gym near work # [ # ('find', 'ROOT', 'find'), # ('cheapest', 'QUALITY', 'gym'), # ('gym', 'PLACE', 'find') # ] # show me the best hotel in berlin # [ # ('show', 'ROOT', 'show'), # ('best', 'QUALITY', 'hotel'), # ('hotel', 'PLACE', 'show'), # ('berlin', 'LOCATION', 'hotel') # ]