# cython: profile=True # cython: embedsignature=True '''Tokenize English text, using a scheme that differs from the Penn Treebank 3 scheme in several important respects: * Whitespace is added as tokens, except for single spaces. e.g., >>> [w.string for w in EN.tokenize(u'\\nHello \\tThere')] [u'\\n', u'Hello', u' ', u'\\t', u'There'] * Contractions are normalized, e.g. >>> [w.string for w in EN.tokenize(u"isn't ain't won't he's")] [u'is', u'not', u'are', u'not', u'will', u'not', u'he', u"__s"] * Hyphenated words are split, with the hyphen preserved, e.g.: >>> [w.string for w in EN.tokenize(u'New York-based')] [u'New', u'York', u'-', u'based'] Other improvements: * Email addresses, URLs, European-formatted dates and other numeric entities not found in the PTB are tokenized correctly * Heuristic handling of word-final periods (PTB expects sentence boundary detection as a pre-process before tokenization.) Take care to ensure your training and run-time data is tokenized according to the same scheme. Tokenization problems are a major cause of poor performance for NLP tools. If you're using a pre-trained model, the :py:mod:`spacy.ptb3` module provides a fully Penn Treebank 3-compliant tokenizer. ''' from __future__ import unicode_literals cimport lang from .typedefs cimport flags_t import orth POS_TEMPLATES = ( (W_sic,), (P1_sic,), (N1_sic,), (N2_sic,), (P2_sic,), (W_suffix,), (W_prefix,), (P1_pos,), (P2_pos,), (P1_pos, P2_pos), (P1_pos, W_sic), (P1_suffix,), (N1_suffix,), (W_shape,), (W_cluster,), (N1_cluster,), (N2_cluster,), (P1_cluster,), (P2_cluster,), ) cdef class English(Language): """English tokenizer, tightly coupled to lexicon. Attributes: name (unicode): The two letter code used by Wikipedia for the language. lexicon (Lexicon): The lexicon. Exposes the lookup method. """ def get_props(self, unicode string): return {'flags': self.set_flags(string), 'dense': orth.word_shape(string)} def set_flags(self, unicode string): cdef flags_t flags = 0 flags |= orth.is_alpha(string) << IS_ALPHA flags |= orth.is_ascii(string) << IS_ASCII flags |= orth.is_digit(string) << IS_DIGIT flags |= orth.is_lower(string) << IS_LOWER flags |= orth.is_punct(string) << IS_PUNCT flags |= orth.is_space(string) << IS_SPACE flags |= orth.is_title(string) << IS_TITLE flags |= orth.is_upper(string) << IS_UPPER flags |= orth.like_url(string) << LIKE_URL flags |= orth.like_number(string) << LIKE_NUMBER return flags def set_pos(self, Tokens tokens): cdef int i cdef atom_t[N_CONTEXT_FIELDS] context for i in range(tokens.length): fill_pos_context(context, i, tokens.data) tokens.data[i].pos = self.pos_tagger.predict(context) def train_pos(self, Tokens tokens, golds): cdef int i cdef atom_t[N_CONTEXT_FIELDS] context c = 0 for i in range(tokens.length): fill_pos_context(context, i, tokens.data) tokens.data[i].pos = self.pos_tagger.predict(context, [golds[i]]) c += tokens.data[i].pos == golds[i] return c EN = English('en')