# cython: infer_types=True # coding: utf8 from __future__ import unicode_literals from libc.string cimport memcpy from cpython.mem cimport PyMem_Malloc, PyMem_Free # Compiler crashes on memory view coercion without this. Should report bug. from cython.view cimport array as cvarray cimport numpy as np np.import_array() import numpy from ..typedefs cimport hash_t from ..lexeme cimport Lexeme from .. import parts_of_speech from ..attrs cimport IS_ALPHA, IS_ASCII, IS_DIGIT, IS_LOWER, IS_PUNCT, IS_SPACE from ..attrs cimport IS_BRACKET, IS_QUOTE, IS_LEFT_PUNCT, IS_RIGHT_PUNCT, IS_OOV from ..attrs cimport IS_TITLE, IS_UPPER, LIKE_URL, LIKE_NUM, LIKE_EMAIL, IS_STOP from ..attrs cimport ID, ORTH, NORM, LOWER, SHAPE, PREFIX, SUFFIX, LENGTH, CLUSTER from ..attrs cimport LEMMA, POS, TAG, DEP from ..compat import is_config from .. import about cdef class Token: """An individual token – i.e. a word, punctuation symbol, whitespace, etc.""" def __cinit__(self, Vocab vocab, Doc doc, int offset): """Construct a `Token` object. vocab (Vocab): A storage container for lexical types. doc (Doc): The parent document. offset (int): The index of the token within the document. """ self.vocab = vocab self.doc = doc self.c = &self.doc.c[offset] self.i = offset def __hash__(self): return hash((self.doc, self.i)) def __len__(self): """The number of unicode characters in the token, i.e. `token.text`. RETURNS (int): The number of unicode characters in the token. """ return self.c.lex.length def __unicode__(self): return self.text def __bytes__(self): return self.text.encode('utf8') def __str__(self): if is_config(python3=True): return self.__unicode__() return self.__bytes__() def __repr__(self): return self.__str__() def __richcmp__(self, Token other, int op): # http://cython.readthedocs.io/en/latest/src/userguide/special_methods.html cdef Doc my_doc = self.doc cdef Doc other_doc = other.doc my = self.idx their = other.idx if other is not None else None if op == 0: return my < their elif op == 2: if my_doc is other_doc: return my == their else: return False elif op == 4: return my > their elif op == 1: return my <= their elif op == 3: if my_doc is other_doc: return my != their else: return True elif op == 5: return my >= their else: raise ValueError(op) cpdef bint check_flag(self, attr_id_t flag_id) except -1: """Check the value of a boolean flag. flag_id (int): The ID of the flag attribute. RETURNS (bool): Whether the flag is set. EXAMPLE: >>> from spacy.attrs import IS_TITLE >>> doc = nlp(u'Give it back! He pleaded.') >>> token = doc[0] >>> token.check_flag(IS_TITLE) True """ return Lexeme.c_check_flag(self.c.lex, flag_id) def nbor(self, int i=1): """Get a neighboring token. i (int): The relative position of the token to get. Defaults to 1. RETURNS (Token): The token at position `self.doc[self.i+i]`. """ return self.doc[self.i+i] def similarity(self, other): """Make a semantic similarity estimate. The default estimate is cosine similarity using an average of word vectors. other (object): The object to compare with. By default, accepts `Doc`, `Span`, `Token` and `Lexeme` objects. RETURNS (float): A scalar similarity score. Higher is more similar. """ if 'similarity' in self.doc.user_token_hooks: return self.doc.user_token_hooks['similarity'](self) if self.vector_norm == 0 or other.vector_norm == 0: return 0.0 return numpy.dot(self.vector, other.vector) / (self.vector_norm * other.vector_norm) property lex_id: """ID of the token's lexical type. RETURNS (int): ID of the token's lexical type.""" def __get__(self): return self.c.lex.id property rank: # TODO: add docstring def __get__(self): return self.c.lex.id property string: def __get__(self): return self.text_with_ws property text: """A unicode representation of the token text. RETURNS (unicode): The original verbatim text of the token. """ def __get__(self): return self.orth_ property text_with_ws: """The text content of the token with a trailing whitespace character if it has one. RETURNS (unicode): The text content of the span (with trailing whitespace). """ def __get__(self): cdef unicode orth = self.vocab.strings[self.c.lex.orth] if self.c.spacy: return orth + u' ' else: return orth property prob: def __get__(self): return self.c.lex.prob property sentiment: def __get__(self): if 'sentiment' in self.doc.user_token_hooks: return self.doc.user_token_hooks['sentiment'](self) return self.c.lex.sentiment property lang: def __get__(self): return self.c.lex.lang property idx: def __get__(self): return self.c.idx property cluster: def __get__(self): return self.c.lex.cluster property orth: def __get__(self): return self.c.lex.orth property lower: def __get__(self): return self.c.lex.lower property norm: def __get__(self): return self.c.lex.norm property shape: def __get__(self): return self.c.lex.shape property prefix: def __get__(self): return self.c.lex.prefix property suffix: def __get__(self): return self.c.lex.suffix property lemma: """Base form of the word, with no inflectional suffixes. RETURNS (uint64): Token lemma. """ def __get__(self): return self.c.lemma def __set__(self, attr_t lemma): self.c.lemma = lemma property pos: def __get__(self): return self.c.pos property tag: def __get__(self): return self.c.tag def __set__(self, attr_t tag): self.vocab.morphology.assign_tag(self.c, tag) property dep: def __get__(self): return self.c.dep def __set__(self, attr_t label): self.c.dep = label property has_vector: """A boolean value indicating whether a word vector is associated with the object. RETURNS (bool): Whether a word vector is associated with the object. """ def __get__(self): if 'has_vector' in self.doc.user_token_hooks: return self.doc.user_token_hooks['has_vector'](self) return self.vocab.has_vector(self.c.lex.orth) property vector: """A real-valued meaning representation. RETURNS (numpy.ndarray[ndim=1, dtype='float32']): A 1D numpy array representing the token's semantics. """ def __get__(self): if 'vector' in self.doc.user_token_hooks: return self.doc.user_token_hooks['vector'](self) if self.has_vector: return self.vocab.get_vector(self.c.lex.orth) else: return self.doc.tensor[self.i] property vector_norm: """The L2 norm of the token's vector representation. RETURNS (float): The L2 norm of the vector representation. """ def __get__(self): if 'vector_norm' in self.doc.user_token_hooks: return self.doc.user_token_hooks['vector_norm'](self) vector = self.vector return numpy.sqrt((vector ** 2).sum()) property n_lefts: def __get__(self): return self.c.l_kids property n_rights: def __get__(self): return self.c.r_kids property sent_start: def __get__(self): return self.c.sent_start def __set__(self, bint value): if self.doc.is_parsed: raise ValueError( 'Refusing to write to token.sent_start if its document is parsed, ' 'because this may cause inconsistent state. ' 'See https://github.com/spacy-io/spaCy/issues/235 for workarounds.') self.c.sent_start = value property lefts: def __get__(self): """ The leftward immediate children of the word, in the syntactic dependency parse. """ cdef int nr_iter = 0 cdef const TokenC* ptr = self.c - (self.i - self.c.l_edge) while ptr < self.c: if ptr + ptr.head == self.c: yield self.doc[ptr - (self.c - self.i)] ptr += 1 nr_iter += 1 # This is ugly, but it's a way to guard out infinite loops if nr_iter >= 10000000: raise RuntimeError( "Possibly infinite loop encountered while looking for token.lefts") property rights: def __get__(self): """ The rightward immediate children of the word, in the syntactic dependency parse. """ cdef const TokenC* ptr = self.c + (self.c.r_edge - self.i) tokens = [] cdef int nr_iter = 0 while ptr > self.c: if ptr + ptr.head == self.c: tokens.append(self.doc[ptr - (self.c - self.i)]) ptr -= 1 nr_iter += 1 if nr_iter >= 10000000: raise RuntimeError( "Possibly infinite loop encountered while looking for token.rights") tokens.reverse() for t in tokens: yield t property children: """ A sequence of the token's immediate syntactic children. Yields: Token A child token such that child.head==self """ def __get__(self): yield from self.lefts yield from self.rights property subtree: """ A sequence of all the token's syntactic descendents. Yields: Token A descendent token such that self.is_ancestor(descendent) """ def __get__(self): for word in self.lefts: yield from word.subtree yield self for word in self.rights: yield from word.subtree property left_edge: """The leftmost token of this token's syntactic descendents. RETURNS (Token): The first token such that `self.is_ancestor(token)`. """ def __get__(self): return self.doc[self.c.l_edge] property right_edge: """The rightmost token of this token's syntactic descendents. RETURNS (Token): The last token such that `self.is_ancestor(token)`. """ def __get__(self): return self.doc[self.c.r_edge] property ancestors: """A sequence of this token's syntactic ancestors. YIELDS (Token): A sequence of ancestor tokens such that `ancestor.is_ancestor(self)`. """ def __get__(self): cdef const TokenC* head_ptr = self.c # guard against infinite loop, no token can have # more ancestors than tokens in the tree cdef int i = 0 while head_ptr.head != 0 and i < self.doc.length: head_ptr += head_ptr.head yield self.doc[head_ptr - (self.c - self.i)] i += 1 def is_ancestor(self, descendant): """Check whether this token is a parent, grandparent, etc. of another in the dependency tree. descendant (Token): Another token. RETURNS (bool): Whether this token is the ancestor of the descendant. """ if self.doc is not descendant.doc: return False return any( ancestor.i == self.i for ancestor in descendant.ancestors ) property head: """The syntactic parent, or "governor", of this token. RETURNS (Token): The token head. """ def __get__(self): """The token predicted by the parser to be the head of the current token. """ return self.doc[self.i + self.c.head] def __set__(self, Token new_head): # this function sets the head of self to new_head # and updates the counters for left/right dependents # and left/right corner for the new and the old head # do nothing if old head is new head if self.i + self.c.head == new_head.i: return cdef Token old_head = self.head cdef int rel_newhead_i = new_head.i - self.i # is the new head a descendant of the old head cdef bint is_desc = old_head.is_ancestor(new_head) cdef int new_edge cdef Token anc, child # update number of deps of old head if self.c.head > 0: # left dependent old_head.c.l_kids -= 1 if self.c.l_edge == old_head.c.l_edge: # the token dominates the left edge so the left edge of the head # may change when the token is reattached # it may not change if the new head is a descendant of the current head new_edge = self.c.l_edge # the new l_edge is the left-most l_edge on any of the other dependents # where the l_edge is left of the head, otherwise it is the head if not is_desc: new_edge = old_head.i for child in old_head.children: if child == self: continue if child.c.l_edge < new_edge: new_edge = child.c.l_edge old_head.c.l_edge = new_edge # walk up the tree from old_head and assign new l_edge to ancestors # until an ancestor already has an l_edge that's further left for anc in old_head.ancestors: if anc.c.l_edge <= new_edge: break anc.c.l_edge = new_edge elif self.c.head < 0: # right dependent old_head.c.r_kids -= 1 # do the same thing as for l_edge if self.c.r_edge == old_head.c.r_edge: new_edge = self.c.r_edge if not is_desc: new_edge = old_head.i for child in old_head.children: if child == self: continue if child.c.r_edge > new_edge: new_edge = child.c.r_edge old_head.c.r_edge = new_edge for anc in old_head.ancestors: if anc.c.r_edge >= new_edge: break anc.c.r_edge = new_edge # update number of deps of new head if rel_newhead_i > 0: # left dependent new_head.c.l_kids += 1 # walk up the tree from new head and set l_edge to self.l_edge # until you hit a token with an l_edge further to the left if self.c.l_edge < new_head.c.l_edge: new_head.c.l_edge = self.c.l_edge for anc in new_head.ancestors: if anc.c.l_edge <= self.c.l_edge: break anc.c.l_edge = self.c.l_edge elif rel_newhead_i < 0: # right dependent new_head.c.r_kids += 1 # do the same as for l_edge if self.c.r_edge > new_head.c.r_edge: new_head.c.r_edge = self.c.r_edge for anc in new_head.ancestors: if anc.c.r_edge >= self.c.r_edge: break anc.c.r_edge = self.c.r_edge # set new head self.c.head = rel_newhead_i property conjuncts: """A sequence of coordinated tokens, including the token itself. YIELDS (Token): A coordinated token. """ def __get__(self): """Get a list of conjoined words.""" cdef Token word if 'conjuncts' in self.doc.user_token_hooks: yield from self.doc.user_token_hooks['conjuncts'](self) else: if self.dep_ != 'conj': for word in self.rights: if word.dep_ == 'conj': yield word yield from word.conjuncts property ent_type: """Named entity type. RETURNS (uint64): Named entity type. """ def __get__(self): return self.c.ent_type def __set__(self, ent_type): self.c.ent_type = ent_type property ent_iob: """IOB code of named entity tag. `1="I", 2="O", 3="B"`. 0 means no tag is assigned. RETURNS (uint64): IOB code of named entity tag. """ def __get__(self): return self.c.ent_iob property ent_type_: """Named entity type. RETURNS (unicode): Named entity type. """ def __get__(self): return self.vocab.strings[self.c.ent_type] def __set__(self, ent_type): self.c.ent_type = self.vocab.strings.add(ent_type) property ent_iob_: """IOB code of named entity tag. "B" means the token begins an entity, "I" means it is inside an entity, "O" means it is outside an entity, and "" means no entity tag is set. RETURNS (unicode): IOB code of named entity tag. """ def __get__(self): iob_strings = ('', 'I', 'O', 'B') return iob_strings[self.c.ent_iob] property ent_id: """ID of the entity the token is an instance of, if any. Usually assigned by patterns in the Matcher. RETURNS (uint64): ID of the entity. """ def __get__(self): return self.c.ent_id def __set__(self, hash_t key): self.c.ent_id = key property ent_id_: """ID of the entity the token is an instance of, if any. Usually assigned by patterns in the Matcher. RETURNS (unicode): ID of the entity. """ def __get__(self): return self.vocab.strings[self.c.ent_id] def __set__(self, name): self.c.ent_id = self.vocab.strings.add(name) property whitespace_: def __get__(self): return ' ' if self.c.spacy else '' property orth_: def __get__(self): return self.vocab.strings[self.c.lex.orth] property lower_: def __get__(self): return self.vocab.strings[self.c.lex.lower] property norm_: def __get__(self): return self.vocab.strings[self.c.lex.norm] property shape_: def __get__(self): return self.vocab.strings[self.c.lex.shape] property prefix_: def __get__(self): return self.vocab.strings[self.c.lex.prefix] property suffix_: def __get__(self): return self.vocab.strings[self.c.lex.suffix] property lang_: def __get__(self): return self.vocab.strings[self.c.lex.lang] property lemma_: """Base form of the word, with no inflectional suffixes. RETURNS (unicode): Token lemma. """ def __get__(self): return self.vocab.strings[self.c.lemma] def __set__(self, unicode lemma_): self.c.lemma = self.vocab.strings.add(lemma_) property pos_: def __get__(self): return parts_of_speech.NAMES[self.c.pos] property tag_: def __get__(self): return self.vocab.strings[self.c.tag] def __set__(self, tag): self.tag = self.vocab.strings.add(tag) property dep_: def __get__(self): return self.vocab.strings[self.c.dep] def __set__(self, unicode label): self.c.dep = self.vocab.strings.add(label) property is_oov: def __get__(self): return Lexeme.c_check_flag(self.c.lex, IS_OOV) property is_stop: def __get__(self): return Lexeme.c_check_flag(self.c.lex, IS_STOP) property is_alpha: def __get__(self): return Lexeme.c_check_flag(self.c.lex, IS_ALPHA) property is_ascii: def __get__(self): return Lexeme.c_check_flag(self.c.lex, IS_ASCII) property is_digit: def __get__(self): return Lexeme.c_check_flag(self.c.lex, IS_DIGIT) property is_lower: def __get__(self): return Lexeme.c_check_flag(self.c.lex, IS_LOWER) property is_title: def __get__(self): return Lexeme.c_check_flag(self.c.lex, IS_TITLE) property is_punct: def __get__(self): return Lexeme.c_check_flag(self.c.lex, IS_PUNCT) property is_space: def __get__(self): return Lexeme.c_check_flag(self.c.lex, IS_SPACE) property is_bracket: def __get__(self): return Lexeme.c_check_flag(self.c.lex, IS_BRACKET) property is_quote: def __get__(self): return Lexeme.c_check_flag(self.c.lex, IS_QUOTE) property is_left_punct: def __get__(self): return Lexeme.c_check_flag(self.c.lex, IS_LEFT_PUNCT) property is_right_punct: def __get__(self): return Lexeme.c_check_flag(self.c.lex, IS_RIGHT_PUNCT) property like_url: def __get__(self): return Lexeme.c_check_flag(self.c.lex, LIKE_URL) property like_num: def __get__(self): return Lexeme.c_check_flag(self.c.lex, LIKE_NUM) property like_email: def __get__(self): return Lexeme.c_check_flag(self.c.lex, LIKE_EMAIL)