import pytest from spacy.training import Corpus from spacy.training.augment import create_orth_variants_augmenter from spacy.training.augment import create_lower_casing_augmenter from spacy.lang.en import English from spacy.tokens import DocBin, Doc from contextlib import contextmanager import random from ..util import make_tempdir @contextmanager def make_docbin(docs, name="roundtrip.spacy"): with make_tempdir() as tmpdir: output_file = tmpdir / name DocBin(docs=docs).to_disk(output_file) yield output_file @pytest.fixture def nlp(): return English() @pytest.fixture def doc(nlp): # fmt: off words = ["Sarah", "'s", "sister", "flew", "to", "Silicon", "Valley", "via", "London", "."] tags = ["NNP", "POS", "NN", "VBD", "IN", "NNP", "NNP", "IN", "NNP", "."] pos = ["PROPN", "PART", "NOUN", "VERB", "ADP", "PROPN", "PROPN", "ADP", "PROPN", "PUNCT"] ents = ["B-PERSON", "I-PERSON", "O", "O", "O", "B-LOC", "I-LOC", "O", "B-GPE", "O"] cats = {"TRAVEL": 1.0, "BAKING": 0.0} # fmt: on doc = Doc(nlp.vocab, words=words, tags=tags, pos=pos, ents=ents) doc.cats = cats return doc @pytest.mark.filterwarnings("ignore::UserWarning") def test_make_orth_variants(nlp): single = [ {"tags": ["NFP"], "variants": ["…", "..."]}, {"tags": [":"], "variants": ["-", "—", "–", "--", "---", "——"]}, ] # fmt: off words = ["\n\n", "A", "\t", "B", "a", "b", "…", "...", "-", "—", "–", "--", "---", "——"] tags = ["_SP", "NN", "\t", "NN", "NN", "NN", "NFP", "NFP", ":", ":", ":", ":", ":", ":"] # fmt: on spaces = [True] * len(words) spaces[0] = False spaces[2] = False doc = Doc(nlp.vocab, words=words, spaces=spaces, tags=tags) augmenter = create_orth_variants_augmenter( level=0.2, lower=0.5, orth_variants={"single": single} ) with make_docbin([doc] * 10) as output_file: reader = Corpus(output_file, augmenter=augmenter) # Due to randomness, only test that it works without errors list(reader(nlp)) # check that the following settings lowercase everything augmenter = create_orth_variants_augmenter( level=1.0, lower=1.0, orth_variants={"single": single} ) with make_docbin([doc] * 10) as output_file: reader = Corpus(output_file, augmenter=augmenter) for example in reader(nlp): for token in example.reference: assert token.text == token.text.lower() # check that lowercasing is applied without tags doc = Doc(nlp.vocab, words=words, spaces=[True] * len(words)) augmenter = create_orth_variants_augmenter( level=1.0, lower=1.0, orth_variants={"single": single} ) with make_docbin([doc] * 10) as output_file: reader = Corpus(output_file, augmenter=augmenter) for example in reader(nlp): for ex_token, doc_token in zip(example.reference, doc): assert ex_token.text == doc_token.text.lower() # check that no lowercasing is applied with lower=0.0 doc = Doc(nlp.vocab, words=words, spaces=[True] * len(words)) augmenter = create_orth_variants_augmenter( level=1.0, lower=0.0, orth_variants={"single": single} ) with make_docbin([doc] * 10) as output_file: reader = Corpus(output_file, augmenter=augmenter) for example in reader(nlp): for ex_token, doc_token in zip(example.reference, doc): assert ex_token.text == doc_token.text def test_lowercase_augmenter(nlp, doc): augmenter = create_lower_casing_augmenter(level=1.0) with make_docbin([doc]) as output_file: reader = Corpus(output_file, augmenter=augmenter) corpus = list(reader(nlp)) eg = corpus[0] assert eg.reference.text == doc.text.lower() assert eg.predicted.text == doc.text.lower() ents = [(e.start, e.end, e.label) for e in doc.ents] assert [(e.start, e.end, e.label) for e in eg.reference.ents] == ents for ref_ent, orig_ent in zip(eg.reference.ents, doc.ents): assert ref_ent.text == orig_ent.text.lower() assert [t.pos_ for t in eg.reference] == [t.pos_ for t in doc] # check that augmentation works when lowercasing leads to different # predicted tokenization words = ["A", "B", "CCC."] doc = Doc(nlp.vocab, words=words) with make_docbin([doc]) as output_file: reader = Corpus(output_file, augmenter=augmenter) corpus = list(reader(nlp)) eg = corpus[0] assert eg.reference.text == doc.text.lower() assert eg.predicted.text == doc.text.lower() assert [t.text for t in eg.reference] == [t.lower() for t in words] assert [t.text for t in eg.predicted] == [ t.text for t in nlp.make_doc(doc.text.lower()) ] @pytest.mark.filterwarnings("ignore::UserWarning") def test_custom_data_augmentation(nlp, doc): def create_spongebob_augmenter(randomize: bool = False): def augment(nlp, example): text = example.text if randomize: ch = [c.lower() if random.random() < 0.5 else c.upper() for c in text] else: ch = [c.lower() if i % 2 else c.upper() for i, c in enumerate(text)] example_dict = example.to_dict() doc = nlp.make_doc("".join(ch)) example_dict["token_annotation"]["ORTH"] = [t.text for t in doc] yield example yield example.from_dict(doc, example_dict) return augment with make_docbin([doc]) as output_file: reader = Corpus(output_file, augmenter=create_spongebob_augmenter()) corpus = list(reader(nlp)) orig_text = "Sarah 's sister flew to Silicon Valley via London . " augmented = "SaRaH 's sIsTeR FlEw tO SiLiCoN VaLlEy vIa lOnDoN . " assert corpus[0].text == orig_text assert corpus[0].reference.text == orig_text assert corpus[0].predicted.text == orig_text assert corpus[1].text == augmented assert corpus[1].reference.text == augmented assert corpus[1].predicted.text == augmented ents = [(e.start, e.end, e.label) for e in doc.ents] assert [(e.start, e.end, e.label) for e in corpus[0].reference.ents] == ents assert [(e.start, e.end, e.label) for e in corpus[1].reference.ents] == ents