--- title: TextCategorizer tag: class source: spacy/pipeline/textcat.py new: 2 teaser: 'Pipeline component for text classification' api_base_class: /api/pipe api_string_name: textcat api_trainable: true --- The text categorizer predicts **categories over a whole document**. It can learn one or more labels, and the labels can be mutually exclusive (i.e. one true label per document) or non-mutually exclusive (i.e. zero or more labels may be true per document). The multi-label setting is controlled by the model instance that's provided. ## Config and implementation {#config} The default config is defined by the pipeline component factory and describes how the component should be configured. You can override its settings via the `config` argument on [`nlp.add_pipe`](/api/language#add_pipe) or in your [`config.cfg` for training](/usage/training#config). See the [model architectures](/api/architectures) documentation for details on the architectures and their arguments and hyperparameters. > #### Example > > ```python > from spacy.pipeline.textcat import DEFAULT_TEXTCAT_MODEL > config = { > "labels": [], > "threshold": 0.5, > "model": DEFAULT_TEXTCAT_MODEL, > } > nlp.add_pipe("textcat", config=config) > ``` | Setting | Description | | ---------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------- | | `labels` | A list of categories to learn. If empty, the model infers the categories from the data. Defaults to `[]`. ~~Iterable[str]~~ | | `threshold` | Cutoff to consider a prediction "positive", relevant when printing accuracy results. ~~float~~ | | `positive_label` | The positive label for a binary task with exclusive classes, None otherwise and by default. ~~Optional[str]~~ | | `model` | A model instance that predicts scores for each category. Defaults to [TextCatEnsemble](/api/architectures#TextCatEnsemble). ~~Model[List[Doc], List[Floats2d]]~~ | ```python %%GITHUB_SPACY/spacy/pipeline/textcat.py ``` ## TextCategorizer.\_\_init\_\_ {#init tag="method"} > #### Example > > ```python > # Construction via add_pipe with default model > textcat = nlp.add_pipe("textcat") > > # Construction via add_pipe with custom model > config = {"model": {"@architectures": "my_textcat"}} > parser = nlp.add_pipe("textcat", config=config) > > # Construction from class > from spacy.pipeline import TextCategorizer > textcat = TextCategorizer(nlp.vocab, model, labels=[], threshold=0.5, positive_label="POS") > ``` Create a new pipeline instance. In your application, you would normally use a shortcut for this and instantiate the component using its string name and [`nlp.add_pipe`](/api/language#create_pipe). | Name | Description | | ---------------- | -------------------------------------------------------------------------------------------------------------------------- | | `vocab` | The shared vocabulary. ~~Vocab~~ | | `model` | The Thinc [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. ~~Model[List[Doc], List[Floats2d]]~~ | | `name` | String name of the component instance. Used to add entries to the `losses` during training. ~~str~~ | | _keyword-only_ | | | `labels` | The labels to use. ~~Iterable[str]~~ | | `threshold` | Cutoff to consider a prediction "positive", relevant when printing accuracy results. ~~float~~ | | `positive_label` | The positive label for a binary task with exclusive classes, None otherwise. ~~Optional[str]~~ | ## TextCategorizer.\_\_call\_\_ {#call tag="method"} Apply the pipe to one document. The document is modified in place, and returned. This usually happens under the hood when the `nlp` object is called on a text and all pipeline components are applied to the `Doc` in order. Both [`__call__`](/api/textcategorizer#call) and [`pipe`](/api/textcategorizer#pipe) delegate to the [`predict`](/api/textcategorizer#predict) and [`set_annotations`](/api/textcategorizer#set_annotations) methods. > #### Example > > ```python > doc = nlp("This is a sentence.") > textcat = nlp.add_pipe("textcat") > # This usually happens under the hood > processed = textcat(doc) > ``` | Name | Description | | ----------- | -------------------------------- | | `doc` | The document to process. ~~Doc~~ | | **RETURNS** | The processed document. ~~Doc~~ | ## TextCategorizer.pipe {#pipe tag="method"} Apply the pipe to a stream of documents. This usually happens under the hood when the `nlp` object is called on a text and all pipeline components are applied to the `Doc` in order. Both [`__call__`](/api/textcategorizer#call) and [`pipe`](/api/textcategorizer#pipe) delegate to the [`predict`](/api/textcategorizer#predict) and [`set_annotations`](/api/textcategorizer#set_annotations) methods. > #### Example > > ```python > textcat = nlp.add_pipe("textcat") > for doc in textcat.pipe(docs, batch_size=50): > pass > ``` | Name | Description | | -------------- | ------------------------------------------------------------- | | `stream` | A stream of documents. ~~Iterable[Doc]~~ | | _keyword-only_ | | | `batch_size` | The number of documents to buffer. Defaults to `128`. ~~int~~ | | **YIELDS** | The processed documents in order. ~~Doc~~ | ## TextCategorizer.begin_training {#begin_training tag="method"} Initialize the component for training and return an [`Optimizer`](https://thinc.ai/docs/api-optimizers). `get_examples` should be a function that returns an iterable of [`Example`](/api/example) objects. The data examples are used to **initialize the model** of the component and can either be the full training data or a representative sample. Initialization includes validating the network, [inferring missing shapes](https://thinc.ai/docs/usage-models#validation) and setting up the label scheme based on the data. > #### Example > > ```python > textcat = nlp.add_pipe("textcat") > optimizer = textcat.begin_training(lambda: [], pipeline=nlp.pipeline) > ``` | Name | Description | | -------------- | ------------------------------------------------------------------------------------------------------------------------------------- | | `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. ~~Callable[[], Iterable[Example]]~~ | | _keyword-only_ | | | `pipeline` | Optional list of pipeline components that this component is part of. ~~Optional[List[Tuple[str, Callable[[Doc], Doc]]]]~~ | | `sgd` | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~ | | **RETURNS** | The optimizer. ~~Optimizer~~ | ## TextCategorizer.predict {#predict tag="method"} Apply the component's model to a batch of [`Doc`](/api/doc) objects without modifying them. > #### Example > > ```python > textcat = nlp.add_pipe("textcat") > scores = textcat.predict([doc1, doc2]) > ``` | Name | Description | | ----------- | ------------------------------------------- | | `docs` | The documents to predict. ~~Iterable[Doc]~~ | | **RETURNS** | The model's prediction for each document. | ## TextCategorizer.set_annotations {#set_annotations tag="method"} Modify a batch of [`Doc`](/api/doc) objects using pre-computed scores. > #### Example > > ```python > textcat = nlp.add_pipe("textcat") > scores = textcat.predict(docs) > textcat.set_annotations(docs, scores) > ``` | Name | Description | | -------- | --------------------------------------------------------- | | `docs` | The documents to modify. ~~Iterable[Doc]~~ | | `scores` | The scores to set, produced by `TextCategorizer.predict`. | ## TextCategorizer.update {#update tag="method"} Learn from a batch of [`Example`](/api/example) objects containing the predictions and gold-standard annotations, and update the component's model. Delegates to [`predict`](/api/textcategorizer#predict) and [`get_loss`](/api/textcategorizer#get_loss). > #### Example > > ```python > textcat = nlp.add_pipe("textcat") > optimizer = nlp.begin_training() > losses = textcat.update(examples, sgd=optimizer) > ``` | Name | Description | | ----------------- | ---------------------------------------------------------------------------------------------------------------------------------- | | `examples` | A batch of [`Example`](/api/example) objects to learn from. ~~Iterable[Example]~~ | | _keyword-only_ | | | `drop` | The dropout rate. ~~float~~ | | `set_annotations` | Whether or not to update the `Example` objects with the predictions, delegating to [`set_annotations`](#set_annotations). ~~bool~~ | | `sgd` | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~ | | `losses` | Optional record of the loss during training. Updated using the component name as the key. ~~Optional[Dict[str, float]]~~ | | **RETURNS** | The updated `losses` dictionary. ~~Dict[str, float]~~ | ## TextCategorizer.rehearse {#rehearse tag="method,experimental" new="3"} Perform a "rehearsal" update from a batch of data. Rehearsal updates teach the current model to make predictions similar to an initial model to try to address the "catastrophic forgetting" problem. This feature is experimental. > #### Example > > ```python > textcat = nlp.add_pipe("textcat") > optimizer = nlp.resume_training() > losses = textcat.rehearse(examples, sgd=optimizer) > ``` | Name | Description | | -------------- | ------------------------------------------------------------------------------------------------------------------------ | | `examples` | A batch of [`Example`](/api/example) objects to learn from. ~~Iterable[Example]~~ | | _keyword-only_ | | | `drop` | The dropout rate. ~~float~~ | | `sgd` | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~ | | `losses` | Optional record of the loss during training. Updated using the component name as the key. ~~Optional[Dict[str, float]]~~ | | **RETURNS** | The updated `losses` dictionary. ~~Dict[str, float]~~ | ## TextCategorizer.get_loss {#get_loss tag="method"} Find the loss and gradient of loss for the batch of documents and their predicted scores. > #### Example > > ```python > textcat = nlp.add_pipe("textcat") > scores = textcat.predict([eg.predicted for eg in examples]) > loss, d_loss = textcat.get_loss(examples, scores) > ``` | Name | Description | | ----------- | --------------------------------------------------------------------------- | | `examples` | The batch of examples. ~~Iterable[Example]~~ | | `scores` | Scores representing the model's predictions. | | **RETURNS** | The loss and the gradient, i.e. `(loss, gradient)`. ~~Tuple[float, float]~~ | ## TextCategorizer.score {#score tag="method" new="3"} Score a batch of examples. > #### Example > > ```python > scores = textcat.score(examples) > ``` | Name | Description | | ---------------- | -------------------------------------------------------------------------------------------------------------------- | | `examples` | The examples to score. ~~Iterable[Example]~~ | | _keyword-only_ | | | `positive_label` | Optional positive label. ~~Optional[str]~~ | | **RETURNS** | The scores, produced by [`Scorer.score_cats`](/api/scorer#score_cats). ~~Dict[str, Union[float, Dict[str, float]]]~~ | ## TextCategorizer.create_optimizer {#create_optimizer tag="method"} Create an optimizer for the pipeline component. > #### Example > > ```python > textcat = nlp.add_pipe("textcat") > optimizer = textcat.create_optimizer() > ``` | Name | Description | | ----------- | ---------------------------- | | **RETURNS** | The optimizer. ~~Optimizer~~ | ## TextCategorizer.use_params {#use_params tag="method, contextmanager"} Modify the pipe's model to use the given parameter values. > #### Example > > ```python > textcat = nlp.add_pipe("textcat") > with textcat.use_params(optimizer.averages): > textcat.to_disk("/best_model") > ``` | Name | Description | | -------- | -------------------------------------------------- | | `params` | The parameter values to use in the model. ~~dict~~ | ## TextCategorizer.add_label {#add_label tag="method"} Add a new label to the pipe. Raises an error if the output dimension is already set, or if the model has already been fully [initialized](#begin_training). Note that you don't have to call this method if you provide a **representative data sample** to the [`begin_training`](#begin_training) method. In this case, all labels found in the sample will be automatically added to the model, and the output dimension will be [inferred](/usage/layers-architectures#thinc-shape-inference) automatically. > #### Example > > ```python > textcat = nlp.add_pipe("textcat") > textcat.add_label("MY_LABEL") > ``` | Name | Description | | ----------- | ----------------------------------------------------------- | | `label` | The label to add. ~~str~~ | | **RETURNS** | `0` if the label is already present, otherwise `1`. ~~int~~ | ## TextCategorizer.to_disk {#to_disk tag="method"} Serialize the pipe to disk. > #### Example > > ```python > textcat = nlp.add_pipe("textcat") > textcat.to_disk("/path/to/textcat") > ``` | Name | Description | | -------------- | ------------------------------------------------------------------------------------------------------------------------------------------ | | `path` | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ | | _keyword-only_ | | | `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ | ## TextCategorizer.from_disk {#from_disk tag="method"} Load the pipe from disk. Modifies the object in place and returns it. > #### Example > > ```python > textcat = nlp.add_pipe("textcat") > textcat.from_disk("/path/to/textcat") > ``` | Name | Description | | -------------- | ----------------------------------------------------------------------------------------------- | | `path` | A path to a directory. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ | | _keyword-only_ | | | `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ | | **RETURNS** | The modified `TextCategorizer` object. ~~TextCategorizer~~ | ## TextCategorizer.to_bytes {#to_bytes tag="method"} > #### Example > > ```python > textcat = nlp.add_pipe("textcat") > textcat_bytes = textcat.to_bytes() > ``` Serialize the pipe to a bytestring. | Name | Description | | -------------- | ------------------------------------------------------------------------------------------- | | _keyword-only_ | | | `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ | | **RETURNS** | The serialized form of the `TextCategorizer` object. ~~bytes~~ | ## TextCategorizer.from_bytes {#from_bytes tag="method"} Load the pipe from a bytestring. Modifies the object in place and returns it. > #### Example > > ```python > textcat_bytes = textcat.to_bytes() > textcat = nlp.add_pipe("textcat") > textcat.from_bytes(textcat_bytes) > ``` | Name | Description | | -------------- | ------------------------------------------------------------------------------------------- | | `bytes_data` | The data to load from. ~~bytes~~ | | _keyword-only_ | | | `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ | | **RETURNS** | The `TextCategorizer` object. ~~TextCategorizer~~ | ## TextCategorizer.labels {#labels tag="property"} The labels currently added to the component. > #### Example > > ```python > textcat.add_label("MY_LABEL") > assert "MY_LABEL" in textcat.labels > ``` | Name | Description | | ----------- | ------------------------------------------------------ | | **RETURNS** | The labels added to the component. ~~Tuple[str, ...]~~ | ## Serialization fields {#serialization-fields} During serialization, spaCy will export several data fields used to restore different aspects of the object. If needed, you can exclude them from serialization by passing in the string names via the `exclude` argument. > #### Example > > ```python > data = textcat.to_disk("/path", exclude=["vocab"]) > ``` | Name | Description | | ------- | -------------------------------------------------------------- | | `vocab` | The shared [`Vocab`](/api/vocab). | | `cfg` | The config file. You usually don't want to exclude this. | | `model` | The binary model data. You usually don't want to exclude this. |