# Training hyper-parameters and additional features. [training] # Whether to train on sequences with 'gold standard' sentence boundaries # and tokens. If you set this to true, take care to ensure your run-time # data is passed in sentence-by-sentence via some prior preprocessing. gold_preproc = false # Limitations on training document length or number of examples. max_length = 5000 limit = 0 # Data augmentation orth_variant_level = 0.0 dropout = 0.1 # Controls early-stopping. 0 or -1 mean unlimited. patience = 1600 max_epochs = 0 max_steps = 20000 eval_frequency = 200 # Other settings seed = 0 accumulate_gradient = 1 use_pytorch_for_gpu_memory = false # Control how scores are printed and checkpoints are evaluated. eval_batch_size = 128 score_weights = {"las": 0.4, "ents_f": 0.4, "tags_acc": 0.2} init_tok2vec = null discard_oversize = false batch_by = "words" raw_text = null tag_map = null vectors = null base_model = null morph_rules = null [training.batch_size] @schedules = "compounding.v1" start = 100 stop = 1000 compound = 1.001 [training.optimizer] @optimizers = "Adam.v1" beta1 = 0.9 beta2 = 0.999 L2_is_weight_decay = true L2 = 0.01 grad_clip = 1.0 use_averages = false eps = 1e-8 learn_rate = 0.001 [nlp] lang = "en" load_vocab_data = false pipeline = ["tok2vec", "ner", "tagger", "parser"] [nlp.tokenizer] @tokenizers = "spacy.Tokenizer.v1" [nlp.lemmatizer] @lemmatizers = "spacy.Lemmatizer.v1" [components] [components.tok2vec] factory = "tok2vec" [components.ner] factory = "ner" learn_tokens = false min_action_freq = 1 [components.tagger] factory = "tagger" [components.parser] factory = "parser" learn_tokens = false min_action_freq = 30 [components.tagger.model] @architectures = "spacy.Tagger.v1" [components.tagger.model.tok2vec] @architectures = "spacy.Tok2VecListener.v1" width = ${components.tok2vec.model.encode:width} [components.parser.model] @architectures = "spacy.TransitionBasedParser.v1" nr_feature_tokens = 8 hidden_width = 128 maxout_pieces = 2 use_upper = true [components.parser.model.tok2vec] @architectures = "spacy.Tok2VecListener.v1" width = ${components.tok2vec.model.encode:width} [components.ner.model] @architectures = "spacy.TransitionBasedParser.v1" nr_feature_tokens = 3 hidden_width = 128 maxout_pieces = 2 use_upper = true [components.ner.model.tok2vec] @architectures = "spacy.Tok2VecListener.v1" width = ${components.tok2vec.model.encode:width} [components.tok2vec.model] @architectures = "spacy.Tok2Vec.v1" [components.tok2vec.model.embed] @architectures = "spacy.MultiHashEmbed.v1" width = ${components.tok2vec.model.encode:width} rows = 2000 also_embed_subwords = true also_use_static_vectors = false [components.tok2vec.model.encode] @architectures = "spacy.MaxoutWindowEncoder.v1" width = 96 depth = 4 window_size = 1 maxout_pieces = 3