from pathlib import Path from typing import Optional, Callable, Iterable, List, Tuple from thinc.types import Floats2d from thinc.api import chain, list2ragged, reduce_mean, residual from thinc.api import Model, Maxout, Linear, tuplify, Ragged from ...util import registry from ...kb import KnowledgeBase, InMemoryLookupKB from ...kb import Candidate, get_candidates, get_candidates_batch from ...vocab import Vocab from ...tokens import Span, Doc from ..extract_spans import extract_spans from ...errors import Errors @registry.architectures("spacy.EntityLinker.v2") def build_nel_encoder( tok2vec: Model, nO: Optional[int] = None ) -> Model[List[Doc], Floats2d]: with Model.define_operators({">>": chain, "&": tuplify}): token_width = tok2vec.maybe_get_dim("nO") output_layer = Linear(nO=nO, nI=token_width) model = ( ((tok2vec >> list2ragged()) & build_span_maker()) >> extract_spans() >> reduce_mean() >> residual(Maxout(nO=token_width, nI=token_width, nP=2, dropout=0.0)) # type: ignore >> output_layer ) model.set_ref("output_layer", output_layer) model.set_ref("tok2vec", tok2vec) # flag to show this isn't legacy model.attrs["include_span_maker"] = True return model def build_span_maker(n_sents: int = 0) -> Model: model: Model = Model("span_maker", forward=span_maker_forward) model.attrs["n_sents"] = n_sents return model def span_maker_forward(model, docs: List[Doc], is_train) -> Tuple[Ragged, Callable]: ops = model.ops n_sents = model.attrs["n_sents"] candidates = [] for doc in docs: cands = [] try: sentences = [s for s in doc.sents] except ValueError: # no sentence info, normal in initialization for tok in doc: tok.is_sent_start = tok.i == 0 sentences = [doc[:]] for ent in doc.ents: try: # find the sentence in the list of sentences. sent_index = sentences.index(ent.sent) except AttributeError: # Catch the exception when ent.sent is None and provide a user-friendly warning raise RuntimeError(Errors.E030) from None # get n previous sentences, if there are any start_sentence = max(0, sent_index - n_sents) # get n posterior sentences, or as many < n as there are end_sentence = min(len(sentences) - 1, sent_index + n_sents) # get token positions start_token = sentences[start_sentence].start end_token = sentences[end_sentence].end # save positions for extraction cands.append((start_token, end_token)) candidates.append(ops.asarray2i(cands)) lengths = model.ops.asarray1i([len(cands) for cands in candidates]) out = Ragged(model.ops.flatten(candidates), lengths) # because this is just rearranging docs, the backprop does nothing return out, lambda x: [] @registry.misc("spacy.KBFromFile.v1") def load_kb( kb_path: Path, ) -> Callable[[Vocab], KnowledgeBase]: def kb_from_file(vocab: Vocab): kb = InMemoryLookupKB(vocab, entity_vector_length=1) kb.from_disk(kb_path) return kb return kb_from_file @registry.misc("spacy.EmptyKB.v1") def empty_kb( entity_vector_length: int, ) -> Callable[[Vocab], KnowledgeBase]: def empty_kb_factory(vocab: Vocab): return InMemoryLookupKB(vocab=vocab, entity_vector_length=entity_vector_length) return empty_kb_factory @registry.misc("spacy.CandidateGenerator.v1") def create_candidates() -> Callable[[KnowledgeBase, Span], Iterable[Candidate]]: return get_candidates @registry.misc("spacy.CandidateBatchGenerator.v1") def create_candidates_batch() -> Callable[ [KnowledgeBase, Iterable[Span]], Iterable[Iterable[Candidate]] ]: return get_candidates_batch