# cython: infer_types=True, profile=True, binding=True import srsly from ..tokens.doc cimport Doc from ..util import link_vectors_to_models, create_default_optimizer from ..errors import Errors from .. import util class Pipe: """This class is a base class and not instantiated directly. Trainable pipeline components like the EntityRecognizer or TextCategorizer inherit from it and it defines the interface that components should follow to function as trainable components in a spaCy pipeline. DOCS: https://spacy.io/api/pipe """ name = None def __init__(self, vocab, model, name, **cfg): """Initialize a pipeline component. vocab (Vocab): The shared vocabulary. model (thinc.api.Model): The Thinc Model powering the pipeline component. name (str): The component instance name. **cfg: Additonal settings and config parameters. DOCS: https://spacy.io/api/pipe#init """ raise NotImplementedError def __call__(self, Doc doc): """Add context-sensitive embeddings to the Doc.tensor attribute. docs (Doc): The Doc to preocess. RETURNS (Doc): The processed Doc. DOCS: https://spacy.io/api/pipe#call """ scores = self.predict([doc]) self.set_annotations([doc], scores) return doc def pipe(self, stream, *, batch_size=128): """Apply the pipe to a stream of documents. This usually happens under the hood when the nlp object is called on a text and all components are applied to the Doc. stream (Iterable[Doc]): A stream of documents. batch_size (int): The number of documents to buffer. YIELDS (Doc): Processed documents in order. DOCS: https://spacy.io/api/pipe#pipe """ for docs in util.minibatch(stream, size=batch_size): scores = self.predict(docs) self.set_annotations(docs, scores) yield from docs def predict(self, docs): """Apply the pipeline's model to a batch of docs, without modifying them. Returns a single tensor for a batch of documents. docs (Iterable[Doc]): The documents to predict. RETURNS: Vector representations for each token in the documents. DOCS: https://spacy.io/api/pipe#predict """ raise NotImplementedError def set_annotations(self, docs, scores): """Modify a batch of documents, using pre-computed scores. docs (Iterable[Doc]): The documents to modify. tokvecses: The tensors to set, produced by Pipe.predict. DOCS: https://spacy.io/api/pipe#predict """ raise NotImplementedError def rehearse(self, examples, *, sgd=None, losses=None, **config): """Perform a "rehearsal" update from a batch of data. Rehearsal updates teach the current model to make predictions similar to an initial model, to try to address the "catastrophic forgetting" problem. This feature is experimental. examples (Iterable[Example]): A batch of Example objects. drop (float): The dropout rate. sgd (thinc.api.Optimizer): The optimizer. losses (Dict[str, float]): Optional record of the loss during training. Updated using the component name as the key. RETURNS (Dict[str, float]): The updated losses dictionary. DOCS: https://spacy.io/api/pipe#rehearse """ pass def get_loss(self, examples, scores): """Find the loss and gradient of loss for the batch of documents and their predicted scores. examples (Iterable[Examples]): The batch of examples. scores: Scores representing the model's predictions. RETUTNRS (Tuple[float, float]): The loss and the gradient. DOCS: https://spacy.io/api/pipe#get_loss """ raise NotImplementedError def add_label(self, label): """Add an output label, to be predicted by the model. It's possible to extend pretrained models with new labels, but care should be taken to avoid the "catastrophic forgetting" problem. label (str): The label to add. RETURNS (int): 0 if label is already present, otherwise 1. DOCS: https://spacy.io/api/pipe#add_label """ raise NotImplementedError def create_optimizer(self): """Create an optimizer for the pipeline component. RETURNS (thinc.api.Optimizer): The optimizer. DOCS: https://spacy.io/api/pipe#create_optimizer """ return create_default_optimizer() def begin_training(self, get_examples=lambda: [], *, pipeline=None, sgd=None): """Initialize the pipe for training, using data examples if available. get_examples (Callable[[], Iterable[Example]]): Optional function that returns gold-standard Example objects. pipeline (List[Tuple[str, Callable]]): Optional list of pipeline components that this component is part of. Corresponds to nlp.pipeline. sgd (thinc.api.Optimizer): Optional optimizer. Will be created with create_optimizer if it doesn't exist. RETURNS (thinc.api.Optimizer): The optimizer. DOCS: https://spacy.io/api/pipe#begin_training """ self.model.initialize() if hasattr(self, "vocab"): link_vectors_to_models(self.vocab) if sgd is None: sgd = self.create_optimizer() return sgd def set_output(self, nO): # TODO: document this across components? if self.model.has_dim("nO") is not False: self.model.set_dim("nO", nO) if self.model.has_ref("output_layer"): self.model.get_ref("output_layer").set_dim("nO", nO) def get_gradients(self): """Get non-zero gradients of the model's parameters, as a dictionary keyed by the parameter ID. The values are (weights, gradients) tuples. """ # TODO: How is this used? gradients = {} queue = [self.model] seen = set() for node in queue: if node.id in seen: continue seen.add(node.id) if hasattr(node, "_mem") and node._mem.gradient.any(): gradients[node.id] = [node._mem.weights, node._mem.gradient] if hasattr(node, "_layers"): queue.extend(node._layers) return gradients def use_params(self, params): """Modify the pipe's model, to use the given parameter values. At the end of the context, the original parameters are restored. params (dict): The parameter values to use in the model. DOCS: https://spacy.io/api/pipe#use_params """ with self.model.use_params(params): yield def score(self, examples, **kwargs): """Score a batch of examples. examples (Iterable[Example]): The examples to score. RETURNS (Dict[str, Any]): The scores. DOCS: https://spacy.io/api/pipe#score """ return {} def to_bytes(self, exclude=tuple()): """Serialize the pipe to a bytestring. exclude (Iterable[str]): String names of serialization fields to exclude. RETURNS (bytes): The serialized object. DOCS: https://spacy.io/api/pipe#to_bytes """ serialize = {} serialize["cfg"] = lambda: srsly.json_dumps(self.cfg) serialize["model"] = self.model.to_bytes if hasattr(self, "vocab"): serialize["vocab"] = self.vocab.to_bytes return util.to_bytes(serialize, exclude) def from_bytes(self, bytes_data, exclude=tuple()): """Load the pipe from a bytestring. exclude (Iterable[str]): String names of serialization fields to exclude. RETURNS (Pipe): The loaded object. DOCS: https://spacy.io/api/pipe#from_bytes """ def load_model(b): try: self.model.from_bytes(b) except AttributeError: raise ValueError(Errors.E149) deserialize = {} if hasattr(self, "vocab"): deserialize["vocab"] = lambda b: self.vocab.from_bytes(b) deserialize["cfg"] = lambda b: self.cfg.update(srsly.json_loads(b)) deserialize["model"] = load_model util.from_bytes(bytes_data, deserialize, exclude) return self def to_disk(self, path, exclude=tuple()): """Serialize the pipe to disk. path (str / Path): Path to a directory. exclude (Iterable[str]): String names of serialization fields to exclude. DOCS: https://spacy.io/api/pipe#to_disk """ serialize = {} serialize["cfg"] = lambda p: srsly.write_json(p, self.cfg) serialize["vocab"] = lambda p: self.vocab.to_disk(p) serialize["model"] = lambda p: self.model.to_disk(p) util.to_disk(path, serialize, exclude) def from_disk(self, path, exclude=tuple()): """Load the pipe from disk. path (str / Path): Path to a directory. exclude (Iterable[str]): String names of serialization fields to exclude. RETURNS (Pipe): The loaded object. DOCS: https://spacy.io/api/pipe#from_disk """ def load_model(p): try: self.model.from_bytes(p.open("rb").read()) except AttributeError: raise ValueError(Errors.E149) deserialize = {} deserialize["vocab"] = lambda p: self.vocab.from_disk(p) deserialize["cfg"] = lambda p: self.cfg.update(deserialize_config(p)) deserialize["model"] = load_model util.from_disk(path, deserialize, exclude) return self def deserialize_config(path): if path.exists(): return srsly.read_json(path) else: return {}