import pytest from .util import get_random_doc from spacy import util from spacy.util import dot_to_object, SimpleFrozenList from thinc.api import Config, Optimizer from spacy.gold.batchers import minibatch_by_words from ..lang.en import English from ..lang.nl import Dutch from ..language import DEFAULT_CONFIG_PATH @pytest.mark.parametrize( "doc_sizes, expected_batches", [ ([400, 400, 199], [3]), ([400, 400, 199, 3], [4]), ([400, 400, 199, 3, 200], [3, 2]), ([400, 400, 199, 3, 1], [5]), ([400, 400, 199, 3, 1, 1500], [5]), # 1500 will be discarded ([400, 400, 199, 3, 1, 200], [3, 3]), ([400, 400, 199, 3, 1, 999], [3, 3]), ([400, 400, 199, 3, 1, 999, 999], [3, 2, 1, 1]), ([1, 2, 999], [3]), ([1, 2, 999, 1], [4]), ([1, 200, 999, 1], [2, 2]), ([1, 999, 200, 1], [2, 2]), ], ) def test_util_minibatch(doc_sizes, expected_batches): docs = [get_random_doc(doc_size) for doc_size in doc_sizes] tol = 0.2 batch_size = 1000 batches = list( minibatch_by_words(docs, size=batch_size, tolerance=tol, discard_oversize=True) ) assert [len(batch) for batch in batches] == expected_batches max_size = batch_size + batch_size * tol for batch in batches: assert sum([len(doc) for doc in batch]) < max_size @pytest.mark.parametrize( "doc_sizes, expected_batches", [ ([400, 4000, 199], [1, 2]), ([400, 400, 199, 3000, 200], [1, 4]), ([400, 400, 199, 3, 1, 1500], [1, 5]), ([400, 400, 199, 3000, 2000, 200, 200], [1, 1, 3, 2]), ([1, 2, 9999], [1, 2]), ([2000, 1, 2000, 1, 1, 1, 2000], [1, 1, 1, 4]), ], ) def test_util_minibatch_oversize(doc_sizes, expected_batches): """ Test that oversized documents are returned in their own batch""" docs = [get_random_doc(doc_size) for doc_size in doc_sizes] tol = 0.2 batch_size = 1000 batches = list( minibatch_by_words(docs, size=batch_size, tolerance=tol, discard_oversize=False) ) assert [len(batch) for batch in batches] == expected_batches def test_util_dot_section(): cfg_string = """ [nlp] lang = "en" pipeline = ["textcat"] load_vocab_data = false [components] [components.textcat] factory = "textcat" [components.textcat.model] @architectures = "spacy.TextCatBOW.v1" exclusive_classes = true ngram_size = 1 no_output_layer = false """ nlp_config = Config().from_str(cfg_string) en_nlp, en_config = util.load_model_from_config(nlp_config, auto_fill=True) default_config = Config().from_disk(DEFAULT_CONFIG_PATH) default_config["nlp"]["lang"] = "nl" nl_nlp, nl_config = util.load_model_from_config(default_config, auto_fill=True) # Test that creation went OK assert isinstance(en_nlp, English) assert isinstance(nl_nlp, Dutch) assert nl_nlp.pipe_names == [] assert en_nlp.pipe_names == ["textcat"] # not exclusive_classes assert en_nlp.get_pipe("textcat").model.attrs["multi_label"] is False # Test that default values got overwritten assert not en_config["nlp"]["load_vocab_data"] assert nl_config["nlp"]["load_vocab_data"] # default value True # Test proper functioning of 'dot_to_object' with pytest.raises(KeyError): dot_to_object(en_config, "nlp.pipeline.tagger") with pytest.raises(KeyError): dot_to_object(en_config, "nlp.unknownattribute") assert not dot_to_object(en_config, "nlp.load_vocab_data") assert dot_to_object(nl_config, "nlp.load_vocab_data") assert isinstance(dot_to_object(nl_config, "training.optimizer"), Optimizer) def test_simple_frozen_list(): t = SimpleFrozenList(["foo", "bar"]) assert t == ["foo", "bar"] assert t.index("bar") == 1 # okay method with pytest.raises(NotImplementedError): t.append("baz") with pytest.raises(NotImplementedError): t.sort() with pytest.raises(NotImplementedError): t.extend(["baz"]) with pytest.raises(NotImplementedError): t.pop() t = SimpleFrozenList(["foo", "bar"], error="Error!") with pytest.raises(NotImplementedError): t.append("baz")