# coding: utf-8 from __future__ import unicode_literals import numpy from spacy.attrs import HEAD, DEP from spacy.symbols import nsubj, dobj, amod, nmod, conj, cc, root from spacy.lang.en.syntax_iterators import SYNTAX_ITERATORS import pytest from ...util import get_doc def test_noun_chunks_is_parsed(en_tokenizer): """Test that noun_chunks raises Value Error for 'en' language if Doc is not parsed. To check this test, we're constructing a Doc with a new Vocab here and forcing is_parsed to 'False' to make sure the noun chunks don't run. """ doc = en_tokenizer("This is a sentence") doc.is_parsed = False with pytest.raises(ValueError): list(doc.noun_chunks) def test_en_noun_chunks_not_nested(en_vocab): words = ["Peter", "has", "chronic", "command", "and", "control", "issues"] heads = [1, 0, 4, 3, -1, -2, -5] deps = ["nsubj", "ROOT", "amod", "nmod", "cc", "conj", "dobj"] doc = get_doc(en_vocab, words=words, heads=heads, deps=deps) doc.from_array( [HEAD, DEP], numpy.asarray( [ [1, nsubj], [0, root], [4, amod], [3, nmod], [numpy.array(-1).astype(numpy.uint64), cc], [numpy.array(-2).astype(numpy.uint64), conj], [numpy.array(-5).astype(numpy.uint64), dobj], ], dtype="uint64", ), ) doc.noun_chunks_iterator = SYNTAX_ITERATORS["noun_chunks"] word_occurred = {} for chunk in doc.noun_chunks: for word in chunk: word_occurred.setdefault(word.text, 0) word_occurred[word.text] += 1 for word, freq in word_occurred.items(): assert freq == 1, (word, [chunk.text for chunk in doc.noun_chunks])