from functools import partial from typing import List, Optional, Tuple, cast from thinc.api import ( Dropout, Gelu, LayerNorm, Linear, Logistic, Maxout, Model, ParametricAttention, ParametricAttention_v2, Relu, Softmax, SparseLinear, SparseLinear_v2, chain, clone, concatenate, list2ragged, noop, reduce_first, reduce_last, reduce_max, reduce_mean, reduce_sum, residual, resizable, softmax_activation, with_cpu, ) from thinc.layers.chain import init as init_chain from thinc.layers.resizable import resize_linear_weighted, resize_model from thinc.types import ArrayXd, Floats2d from ...attrs import ORTH from ...errors import Errors from ...tokens import Doc from ...util import registry from ..extract_ngrams import extract_ngrams from ..staticvectors import StaticVectors from .tok2vec import get_tok2vec_width NEG_VALUE = -5000 @registry.architectures("spacy.TextCatCNN.v2") def build_simple_cnn_text_classifier( tok2vec: Model, exclusive_classes: bool, nO: Optional[int] = None ) -> Model[List[Doc], Floats2d]: """ Build a simple CNN text classifier, given a token-to-vector model as inputs. If exclusive_classes=True, a softmax non-linearity is applied, so that the outputs sum to 1. If exclusive_classes=False, a logistic non-linearity is applied instead, so that outputs are in the range [0, 1]. """ return build_reduce_text_classifier( tok2vec=tok2vec, exclusive_classes=exclusive_classes, use_reduce_first=False, use_reduce_last=False, use_reduce_max=False, use_reduce_mean=True, nO=nO, ) def resize_and_set_ref(model, new_nO, resizable_layer): resizable_layer = resize_model(resizable_layer, new_nO) model.set_ref("output_layer", resizable_layer.layers[0]) model.set_dim("nO", new_nO, force=True) return model @registry.architectures("spacy.TextCatBOW.v2") def build_bow_text_classifier( exclusive_classes: bool, ngram_size: int, no_output_layer: bool, nO: Optional[int] = None, ) -> Model[List[Doc], Floats2d]: return _build_bow_text_classifier( exclusive_classes=exclusive_classes, ngram_size=ngram_size, no_output_layer=no_output_layer, nO=nO, sparse_linear=SparseLinear(nO=nO), ) @registry.architectures("spacy.TextCatBOW.v3") def build_bow_text_classifier_v3( exclusive_classes: bool, ngram_size: int, no_output_layer: bool, length: int = 262144, nO: Optional[int] = None, ) -> Model[List[Doc], Floats2d]: if length < 1: raise ValueError(Errors.E1056.format(length=length)) # Find k such that 2**(k-1) < length <= 2**k. length = 2 ** (length - 1).bit_length() return _build_bow_text_classifier( exclusive_classes=exclusive_classes, ngram_size=ngram_size, no_output_layer=no_output_layer, nO=nO, sparse_linear=SparseLinear_v2(nO=nO, length=length), ) def _build_bow_text_classifier( exclusive_classes: bool, ngram_size: int, no_output_layer: bool, sparse_linear: Model[Tuple[ArrayXd, ArrayXd, ArrayXd], ArrayXd], nO: Optional[int] = None, ) -> Model[List[Doc], Floats2d]: fill_defaults = {"b": 0, "W": 0} with Model.define_operators({">>": chain}): output_layer = None if not no_output_layer: fill_defaults["b"] = NEG_VALUE output_layer = softmax_activation() if exclusive_classes else Logistic() resizable_layer: Model[Floats2d, Floats2d] = resizable( sparse_linear, resize_layer=partial(resize_linear_weighted, fill_defaults=fill_defaults), ) model = extract_ngrams(ngram_size, attr=ORTH) >> resizable_layer model = with_cpu(model, model.ops) if output_layer: model = model >> with_cpu(output_layer, output_layer.ops) if nO is not None: model.set_dim("nO", cast(int, nO)) model.set_ref("output_layer", sparse_linear) model.attrs["multi_label"] = not exclusive_classes model.attrs["resize_output"] = partial( resize_and_set_ref, resizable_layer=resizable_layer ) return model @registry.architectures("spacy.TextCatEnsemble.v2") def build_text_classifier_v2( tok2vec: Model[List[Doc], List[Floats2d]], linear_model: Model[List[Doc], Floats2d], nO: Optional[int] = None, ) -> Model[List[Doc], Floats2d]: width = tok2vec.maybe_get_dim("nO") exclusive_classes = not linear_model.attrs["multi_label"] parametric_attention = _build_parametric_attention_with_residual_nonlinear( tok2vec=tok2vec, nonlinear_layer=Maxout(nI=width, nO=width), key_transform=noop(), ) with Model.define_operators({">>": chain, "|": concatenate}): nO_double = nO * 2 if nO else None if exclusive_classes: output_layer = Softmax(nO=nO, nI=nO_double) else: output_layer = Linear(nO=nO, nI=nO_double) >> Logistic() model = (linear_model | parametric_attention) >> output_layer model.set_ref("tok2vec", tok2vec) if model.has_dim("nO") is not False and nO is not None: model.set_dim("nO", cast(int, nO)) model.set_ref("output_layer", linear_model.get_ref("output_layer")) model.attrs["multi_label"] = not exclusive_classes return model @registry.architectures("spacy.TextCatLowData.v1") def build_text_classifier_lowdata( width: int, dropout: Optional[float], nO: Optional[int] = None ) -> Model[List[Doc], Floats2d]: # Don't document this yet, I'm not sure it's right. # Note, before v.3, this was the default if setting "low_data" and "pretrained_dims" with Model.define_operators({">>": chain, "**": clone}): model = ( StaticVectors(width) >> list2ragged() >> ParametricAttention(width) >> reduce_sum() >> residual(Relu(width, width)) ** 2 >> Linear(nO, width) ) if dropout: model = model >> Dropout(dropout) model = model >> Logistic() return model @registry.architectures("spacy.TextCatParametricAttention.v1") def build_textcat_parametric_attention_v1( tok2vec: Model[List[Doc], List[Floats2d]], exclusive_classes: bool, nO: Optional[int] = None, ) -> Model[List[Doc], Floats2d]: width = tok2vec.maybe_get_dim("nO") parametric_attention = _build_parametric_attention_with_residual_nonlinear( tok2vec=tok2vec, nonlinear_layer=Maxout(nI=width, nO=width), key_transform=Gelu(nI=width, nO=width), ) with Model.define_operators({">>": chain}): if exclusive_classes: output_layer = Softmax(nO=nO) else: output_layer = Linear(nO=nO) >> Logistic() model = parametric_attention >> output_layer if model.has_dim("nO") is not False and nO is not None: model.set_dim("nO", cast(int, nO)) model.set_ref("output_layer", output_layer) model.attrs["multi_label"] = not exclusive_classes return model def _build_parametric_attention_with_residual_nonlinear( *, tok2vec: Model[List[Doc], List[Floats2d]], nonlinear_layer: Model[Floats2d, Floats2d], key_transform: Optional[Model[Floats2d, Floats2d]] = None, ) -> Model[List[Doc], Floats2d]: with Model.define_operators({">>": chain, "|": concatenate}): width = tok2vec.maybe_get_dim("nO") attention_layer = ParametricAttention_v2(nO=width, key_transform=key_transform) norm_layer = LayerNorm(nI=width) parametric_attention = ( tok2vec >> list2ragged() >> attention_layer >> reduce_sum() >> residual(nonlinear_layer >> norm_layer >> Dropout(0.0)) ) parametric_attention.init = _init_parametric_attention_with_residual_nonlinear parametric_attention.set_ref("tok2vec", tok2vec) parametric_attention.set_ref("attention_layer", attention_layer) parametric_attention.set_ref("key_transform", key_transform) parametric_attention.set_ref("nonlinear_layer", nonlinear_layer) parametric_attention.set_ref("norm_layer", norm_layer) return parametric_attention def _init_parametric_attention_with_residual_nonlinear(model, X, Y) -> Model: # When tok2vec is lazily initialized, we need to initialize it before # the rest of the chain to ensure that we can get its width. tok2vec = model.get_ref("tok2vec") tok2vec.initialize(X) tok2vec_width = get_tok2vec_width(model) model.get_ref("attention_layer").set_dim("nO", tok2vec_width) if model.get_ref("key_transform").has_dim("nI") is None: model.get_ref("key_transform").set_dim("nI", tok2vec_width) if model.get_ref("key_transform").has_dim("nO") is None: model.get_ref("key_transform").set_dim("nO", tok2vec_width) model.get_ref("nonlinear_layer").set_dim("nI", tok2vec_width) model.get_ref("nonlinear_layer").set_dim("nO", tok2vec_width) model.get_ref("norm_layer").set_dim("nI", tok2vec_width) model.get_ref("norm_layer").set_dim("nO", tok2vec_width) init_chain(model, X, Y) return model @registry.architectures("spacy.TextCatReduce.v1") def build_reduce_text_classifier( tok2vec: Model, exclusive_classes: bool, use_reduce_first: bool, use_reduce_last: bool, use_reduce_max: bool, use_reduce_mean: bool, nO: Optional[int] = None, ) -> Model[List[Doc], Floats2d]: """Build a model that classifies pooled `Doc` representations. Pooling is performed using reductions. Reductions are concatenated when multiple reductions are used. tok2vec (Model): the tok2vec layer to pool over. exclusive_classes (bool): Whether or not classes are mutually exclusive. use_reduce_first (bool): Pool by using the hidden representation of the first token of a `Doc`. use_reduce_last (bool): Pool by using the hidden representation of the last token of a `Doc`. use_reduce_max (bool): Pool by taking the maximum values of the hidden representations of a `Doc`. use_reduce_mean (bool): Pool by taking the mean of all hidden representations of a `Doc`. nO (Optional[int]): Number of classes. """ fill_defaults = {"b": 0, "W": 0} reductions = [] if use_reduce_first: reductions.append(reduce_first()) if use_reduce_last: reductions.append(reduce_last()) if use_reduce_max: reductions.append(reduce_max()) if use_reduce_mean: reductions.append(reduce_mean()) if not len(reductions): raise ValueError(Errors.E1057) with Model.define_operators({">>": chain}): cnn = tok2vec >> list2ragged() >> concatenate(*reductions) nO_tok2vec = tok2vec.maybe_get_dim("nO") nI = nO_tok2vec * len(reductions) if nO_tok2vec is not None else None if exclusive_classes: output_layer = Softmax(nO=nO, nI=nI) fill_defaults["b"] = NEG_VALUE resizable_layer: Model = resizable( output_layer, resize_layer=partial( resize_linear_weighted, fill_defaults=fill_defaults ), ) model = cnn >> resizable_layer else: output_layer = Linear(nO=nO, nI=nI) resizable_layer = resizable( output_layer, resize_layer=partial( resize_linear_weighted, fill_defaults=fill_defaults ), ) model = cnn >> resizable_layer >> Logistic() model.set_ref("output_layer", output_layer) model.attrs["resize_output"] = partial( resize_and_set_ref, resizable_layer=resizable_layer, ) model.set_ref("tok2vec", tok2vec) if nO is not None: model.set_dim("nO", cast(int, nO)) model.attrs["multi_label"] = not exclusive_classes return model