--- title: KnowledgeBase teaser: A storage class for entities and aliases of a specific knowledge base (ontology) tag: class source: spacy/kb/kb.pyx version: 2.2 --- The `KnowledgeBase` object is an abstract class providing a method to generate [`Candidate`](/api/kb#candidate) objects, which are plausible external identifiers given a certain textual mention. Each such `Candidate` holds information from the relevant KB entities, such as its frequency in text and possible aliases. Each entity in the knowledge base also has a pretrained entity vector of a fixed size. Beyond that, `KnowledgeBase` classes have to implement a number of utility functions called by the [`EntityLinker`](/api/entitylinker) component. This class was not abstract up to spaCy version 3.5. The `KnowledgeBase` implementation up to that point is available as [`InMemoryLookupKB`](/api/inmemorylookupkb) from 3.5 onwards. ## KnowledgeBase.\_\_init\_\_ {id="init",tag="method"} `KnowledgeBase` is an abstract class and cannot be instantiated. Its child classes should call `__init__()` to set up some necessary attributes. > #### Example > > ```python > from spacy.kb import KnowledgeBase > from spacy.vocab import Vocab > > class FullyImplementedKB(KnowledgeBase): > def __init__(self, vocab: Vocab, entity_vector_length: int): > super().__init__(vocab, entity_vector_length) > ... > vocab = nlp.vocab > kb = FullyImplementedKB(vocab=vocab, entity_vector_length=64) > ``` | Name | Description | | ---------------------- | ------------------------------------------------ | | `vocab` | The shared vocabulary. ~~Vocab~~ | | `entity_vector_length` | Length of the fixed-size entity vectors. ~~int~~ | ## KnowledgeBase.entity_vector_length {id="entity_vector_length",tag="property"} The length of the fixed-size entity vectors in the knowledge base. | Name | Description | | ----------- | ------------------------------------------------ | | **RETURNS** | Length of the fixed-size entity vectors. ~~int~~ | ## KnowledgeBase.get_candidates {id="get_candidates",tag="method"} Given textual mentions for an arbitrary number of documents as input, retrieve a list of candidate entities of type [`Candidate`](/api/kb#candidate) for each mention. The [`EntityLinker`](/api/entitylinker) component passes a generator that yields mentions as [`SpanGroup`](/api/spangroup))s per document. The decision of how to batch candidate retrieval lookups over multiple documents is left up to the implementation of `KnowledgeBase.get_candidates()`. > #### Example > > ```python > from spacy.lang.en import English > from spacy.tokens import SpanGroup > nlp = English() > doc = nlp("Douglas Adams wrote 'The Hitchhiker's Guide to the Galaxy'.") > candidates = kb.get_candidates([SpanGroup(doc, spans=[doc[0:2], doc[3:]]]) > ``` | Name | Description | | ----------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | | `mentions` | The textual mentions or aliases (one `SpanGroup` per `Doc` instance). ~~Iterator[SpanGroup]~~ | | **RETURNS** | An iterator (per document) over iterables (per mention) of iterables (per candidate for this mention) with relevant `Candidate` objects. ~~Iterator[Iterable[Iterable[Candidate]]]~~ | ## KnowledgeBase.get_vector {id="get_vector",tag="method"} Given a certain entity ID, retrieve its pretrained entity vector. > #### Example > > ```python > vector = kb.get_vector("Q42") > ``` | Name | Description | | ----------- | -------------------------------------- | | `entity` | The entity ID. ~~str~~ | | **RETURNS** | The entity vector. ~~Iterable[float]~~ | ## KnowledgeBase.get_vectors {id="get_vectors",tag="method"} Same as [`get_vector()`](/api/kb#get_vector), but for an arbitrary number of entity IDs. The default implementation of `get_vectors()` executes `get_vector()` in a loop. We recommend implementing a more efficient way to retrieve vectors for multiple entities at once, if performance is of concern to you. > #### Example > > ```python > vectors = kb.get_vectors(("Q42", "Q3107329")) > ``` | Name | Description | | ----------- | --------------------------------------------------------- | | `entities` | The entity IDs. ~~Iterable[str]~~ | | **RETURNS** | The entity vectors. ~~Iterable[Iterable[numpy.ndarray]]~~ | ## KnowledgeBase.to_disk {id="to_disk",tag="method"} Save the current state of the knowledge base to a directory. > #### Example > > ```python > kb.to_disk(path) > ``` | Name | Description | | --------- | ------------------------------------------------------------------------------------------------------------------------------------------ | | `path` | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ | | `exclude` | List of components to exclude. ~~Iterable[str]~~ | ## KnowledgeBase.from_disk {id="from_disk",tag="method"} Restore the state of the knowledge base from a given directory. Note that the [`Vocab`](/api/vocab) should also be the same as the one used to create the KB. > #### Example > > ```python > from spacy.vocab import Vocab > vocab = Vocab().from_disk("/path/to/vocab") > kb = FullyImplementedKB(vocab=vocab, entity_vector_length=64) > kb.from_disk("/path/to/kb") > ``` | Name | Description | | ----------- | ----------------------------------------------------------------------------------------------- | | `loc` | A path to a directory. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ | | `exclude` | List of components to exclude. ~~Iterable[str]~~ | | **RETURNS** | The modified `KnowledgeBase` object. ~~KnowledgeBase~~ | ## InMemoryCandidate {id="candidate",tag="class"} An `InMemoryCandidate` object refers to a textual mention (alias) that may or may not be resolved to a specific entity from a `KnowledgeBase`. This will be used as input for the entity linking algorithm which will disambiguate the various candidates to the correct one. Each candidate `(alias, entity)` pair is assigned to a certain prior probability. ### InMemoryCandidate.\_\_init\_\_ {id="candidate-init",tag="method"} Construct an `InMemoryCandidate` object. Usually this constructor is not called directly, but instead these objects are returned by the `get_candidates` method of the [`entity_linker`](/api/entitylinker) pipe. > #### Example > > ```python > from spacy.kb import InMemoryCandidate candidate = InMemoryCandidate(kb, > entity_hash, entity_freq, entity_vector, alias_hash, prior_prob) > ``` | Name | Description | | ------------- | ------------------------------------------------------------------------- | | `kb` | The knowledge base that defined this candidate. ~~KnowledgeBase~~ | | `entity_hash` | The hash of the entity's KB ID. ~~int~~ | | `entity_freq` | The entity frequency as recorded in the KB. ~~float~~ | | `alias_hash` | The hash of the entity alias. ~~int~~ | | `prior_prob` | The prior probability of the `alias` referring to the `entity`. ~~float~~ | ## InMemoryCandidate attributes {id="candidate-attributes"} | Name | Description | | --------------- | ------------------------------------------------------------------------ | | `entity` | The entity's unique KB identifier. ~~int~~ | | `entity_` | The entity's unique KB identifier. ~~str~~ | | `alias` | The alias or textual mention. ~~int~~ | | `alias_` | The alias or textual mention. ~~str~~ | | `prior_prob` | The prior probability of the `alias` referring to the `entity`. ~~long~~ | | `entity_freq` | The frequency of the entity in a typical corpus. ~~long~~ | | `entity_vector` | The pretrained vector of the entity. ~~numpy.ndarray~~ |