--- title: Embeddings, Transformers and Transfer Learning teaser: Using transformer embeddings like BERT in spaCy menu: - ['Embedding Layers', 'embedding-layers'] - ['Transformers', 'transformers'] - ['Static Vectors', 'static-vectors'] - ['Pretraining', 'pretraining'] next: /usage/training --- spaCy supports a number of **transfer and multi-task learning** workflows that can often help improve your pipeline's efficiency or accuracy. Transfer learning refers to techniques such as word vector tables and language model pretraining. These techniques can be used to import knowledge from raw text into your pipeline, so that your models are able to generalize better from your annotated examples. You can convert **word vectors** from popular tools like [FastText](https://fasttext.cc) and [Gensim](https://radimrehurek.com/gensim), or you can load in any pretrained **transformer model** if you install [`spacy-transformers`](https://github.com/explosion/spacy-transformers). You can also do your own language model pretraining via the [`spacy pretrain`](/api/cli#pretrain) command. You can even **share** your transformer or other contextual embedding model across multiple components, which can make long pipelines several times more efficient. To use transfer learning, you'll need at least a few annotated examples for what you're trying to predict. Otherwise, you could try using a "one-shot learning" approach using [vectors and similarity](/usage/linguistic-features#vectors-similarity). [Transformers](#transformers) are large and powerful neural networks that give you better accuracy, but are harder to deploy in production, as they require a GPU to run effectively. [Word vectors](#word-vectors) are a slightly older technique that can give your models a smaller improvement in accuracy, and can also provide some additional capabilities. The key difference between word-vectors and contextual language models such as transformers is that word vectors model **lexical types**, rather than _tokens_. If you have a list of terms with no context around them, a transformer model like BERT can't really help you. BERT is designed to understand language **in context**, which isn't what you have. A word vectors table will be a much better fit for your task. However, if you do have words in context – whole sentences or paragraphs of running text – word vectors will only provide a very rough approximation of what the text is about. Word vectors are also very computationally efficient, as they map a word to a vector with a single indexing operation. Word vectors are therefore useful as a way to **improve the accuracy** of neural network models, especially models that are small or have received little or no pretraining. In spaCy, word vector tables are only used as **static features**. spaCy does not backpropagate gradients to the pretrained word vectors table. The static vectors table is usually used in combination with a smaller table of learned task-specific embeddings. Word vectors are not compatible with most [transformer models](#transformers), but if you're training another type of NLP network, it's almost always worth adding word vectors to your model. As well as improving your final accuracy, word vectors often make experiments more consistent, as the accuracy you reach will be less sensitive to how the network is randomly initialized. High variance due to random chance can slow down your progress significantly, as you need to run many experiments to filter the signal from the noise. Word vector features need to be enabled prior to training, and the same word vectors table will need to be available at runtime as well. You cannot add word vector features once the model has already been trained, and you usually cannot replace one word vectors table with another without causing a significant loss of performance. ## Shared embedding layers {id="embedding-layers"} spaCy lets you share a single transformer or other token-to-vector ("tok2vec") embedding layer between multiple components. You can even update the shared layer, performing **multi-task learning**. Reusing the tok2vec layer between components can make your pipeline run a lot faster and result in much smaller models. However, it can make the pipeline less modular and make it more difficult to swap components or retrain parts of the pipeline. Multi-task learning can affect your accuracy (either positively or negatively), and may require some retuning of your hyper-parameters. ![Pipeline components using a shared embedding component vs. independent embedding layers](/images/tok2vec.svg) | Shared | Independent | | ------------------------------------------------------------------------------------------- | ----------------------------------------------------------------------- | | ✅ **smaller:** models only need to include a single copy of the embeddings | ❌ **larger:** models need to include the embeddings for each component | | ✅ **faster:** embed the documents once for your whole pipeline | ❌ **slower:** rerun the embedding for each component | | ❌ **less composable:** all components require the same embedding component in the pipeline | ✅ **modular:** components can be moved and swapped freely | You can share a single transformer or other tok2vec model between multiple components by adding a [`Transformer`](/api/transformer) or [`Tok2Vec`](/api/tok2vec) component near the start of your pipeline. Components later in the pipeline can "connect" to it by including a **listener layer** like [Tok2VecListener](/api/architectures#Tok2VecListener) within their model. ![Pipeline components listening to shared embedding component](/images/tok2vec-listener.svg) At the beginning of training, the [`Tok2Vec`](/api/tok2vec) component will grab a reference to the relevant listener layers in the rest of your pipeline. When it processes a batch of documents, it will pass forward its predictions to the listeners, allowing the listeners to **reuse the predictions** when they are eventually called. A similar mechanism is used to pass gradients from the listeners back to the model. The [`Transformer`](/api/transformer) component and [TransformerListener](/api/architectures#TransformerListener) layer do the same thing for transformer models, but the `Transformer` component will also save the transformer outputs to the [`Doc._.trf_data`](/api/transformer#custom_attributes) extension attribute, giving you access to them after the pipeline has finished running. ### Example: Shared vs. independent config {id="embedding-layers-config"} The [config system](/usage/training#config) lets you express model configuration for both shared and independent embedding layers. The shared setup uses a single [`Tok2Vec`](/api/tok2vec) component with the [Tok2Vec](/api/architectures#Tok2Vec) architecture. All other components, like the entity recognizer, use a [Tok2VecListener](/api/architectures#Tok2VecListener) layer as their model's `tok2vec` argument, which connects to the `tok2vec` component model. ```ini {title="Shared",highlight="1-2,4-5,19-20"} [components.tok2vec] factory = "tok2vec" [components.tok2vec.model] @architectures = "spacy.Tok2Vec.v2" [components.tok2vec.model.embed] @architectures = "spacy.MultiHashEmbed.v2" [components.tok2vec.model.encode] @architectures = "spacy.MaxoutWindowEncoder.v2" [components.ner] factory = "ner" [components.ner.model] @architectures = "spacy.TransitionBasedParser.v2" [components.ner.model.tok2vec] @architectures = "spacy.Tok2VecListener.v1" ``` In the independent setup, the entity recognizer component defines its own [Tok2Vec](/api/architectures#Tok2Vec) instance. Other components will do the same. This makes them fully independent and doesn't require an upstream [`Tok2Vec`](/api/tok2vec) component to be present in the pipeline. ```ini {title="Independent", highlight="7-8"} [components.ner] factory = "ner" [components.ner.model] @architectures = "spacy.TransitionBasedParser.v2" [components.ner.model.tok2vec] @architectures = "spacy.Tok2Vec.v2" [components.ner.model.tok2vec.embed] @architectures = "spacy.MultiHashEmbed.v2" [components.ner.model.tok2vec.encode] @architectures = "spacy.MaxoutWindowEncoder.v2" ``` {/* TODO: Once rehearsal is tested, mention it here. */} ## Using transformer models {id="transformers"} Transformers are a family of neural network architectures that compute **dense, context-sensitive representations** for the tokens in your documents. Downstream models in your pipeline can then use these representations as input features to **improve their predictions**. You can connect multiple components to a single transformer model, with any or all of those components giving feedback to the transformer to fine-tune it to your tasks. spaCy's transformer support interoperates with [PyTorch](https://pytorch.org) and the [HuggingFace `transformers`](https://huggingface.co/transformers/) library, giving you access to thousands of pretrained models for your pipelines. There are many [great guides](http://jalammar.github.io/illustrated-transformer/) to transformer models, but for practical purposes, you can simply think of them as drop-in replacements that let you achieve **higher accuracy** in exchange for **higher training and runtime costs**. ### Setup and installation {id="transformers-installation"} > #### System requirements > > We recommend an NVIDIA **GPU** with at least **10GB of memory** in order to > work with transformer models. Make sure your GPU drivers are up to date and > you have **CUDA v9+** installed. > The exact requirements will depend on the transformer model. Training a > transformer-based model without a GPU will be too slow for most practical > purposes. > > Provisioning a new machine will require about **5GB** of data to be > downloaded: 3GB CUDA runtime, 800MB PyTorch, 400MB CuPy, 500MB weights, 200MB > spaCy and dependencies. Once you have CUDA installed, we recommend installing PyTorch following the [PyTorch installation guidelines](https://pytorch.org/get-started/locally/) for your package manager and CUDA version. If you skip this step, pip will install PyTorch as a dependency below, but it may not find the best version for your setup. ```bash {title="Example: Install PyTorch 1.11.0 for CUDA 11.3 with pip"} # See: https://pytorch.org/get-started/locally/ $ pip install torch==1.11.0+cu113 torchvision==0.12.0+cu113 torchaudio==0.11.0+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html ``` Next, install spaCy with the extras for your CUDA version and transformers. The CUDA extra (e.g., `cuda102`, `cuda113`) installs the correct version of [`cupy`](https://docs.cupy.dev/en/stable/install.html#installing-cupy), which is just like `numpy`, but for GPU. You may also need to set the `CUDA_PATH` environment variable if your CUDA runtime is installed in a non-standard location. Putting it all together, if you had installed CUDA 11.3 in `/opt/nvidia/cuda`, you would run: ```bash {title="Installation with CUDA"} $ export CUDA_PATH="/opt/nvidia/cuda" $ pip install -U %%SPACY_PKG_NAME[cuda113,transformers]%%SPACY_PKG_FLAGS ``` For [`transformers`](https://huggingface.co/transformers/) v4.0.0+ and models that require [`SentencePiece`](https://github.com/google/sentencepiece) (e.g., ALBERT, CamemBERT, XLNet, Marian, and T5), install the additional dependencies with: ```bash {title="Install sentencepiece"} $ pip install transformers[sentencepiece] ``` ### Runtime usage {id="transformers-runtime"} Transformer models can be used as **drop-in replacements** for other types of neural networks, so your spaCy pipeline can include them in a way that's completely invisible to the user. Users will download, load and use the model in the standard way, like any other spaCy pipeline. Instead of using the transformers as subnetworks directly, you can also use them via the [`Transformer`](/api/transformer) pipeline component. ![The processing pipeline with the transformer component](/images/pipeline_transformer.svg) The `Transformer` component sets the [`Doc._.trf_data`](/api/transformer#custom_attributes) extension attribute, which lets you access the transformers outputs at runtime. The trained transformer-based [pipelines](/models) provided by spaCy end on `_trf`, e.g. [`en_core_web_trf`](/models/en#en_core_web_trf). ```bash $ python -m spacy download en_core_web_trf ``` ```python {title="Example"} import spacy from thinc.api import set_gpu_allocator, require_gpu # Use the GPU, with memory allocations directed via PyTorch. # This prevents out-of-memory errors that would otherwise occur from competing # memory pools. set_gpu_allocator("pytorch") require_gpu(0) nlp = spacy.load("en_core_web_trf") for doc in nlp.pipe(["some text", "some other text"]): tokvecs = doc._.trf_data.tensors[-1] ``` You can also customize how the [`Transformer`](/api/transformer) component sets annotations onto the [`Doc`](/api/doc) by specifying a custom `set_extra_annotations` function. This callback will be called with the raw input and output data for the whole batch, along with the batch of `Doc` objects, allowing you to implement whatever you need. The annotation setter is called with a batch of [`Doc`](/api/doc) objects and a [`FullTransformerBatch`](/api/transformer#fulltransformerbatch) containing the transformers data for the batch. ```python def custom_annotation_setter(docs, trf_data): doc_data = list(trf_data.doc_data) for doc, data in zip(docs, doc_data): doc._.custom_attr = data nlp = spacy.load("en_core_web_trf") nlp.get_pipe("transformer").set_extra_annotations = custom_annotation_setter doc = nlp("This is a text") assert isinstance(doc._.custom_attr, TransformerData) print(doc._.custom_attr.tensors) ``` ### Training usage {id="transformers-training"} The recommended workflow for training is to use spaCy's [config system](/usage/training#config), usually via the [`spacy train`](/api/cli#train) command. The training config defines all component settings and hyperparameters in one place and lets you describe a tree of objects by referring to creation functions, including functions you register yourself. For details on how to get started with training your own model, check out the [training quickstart](/usage/training#quickstart). {/* TODO: */} {/* The easiest way to get started is to clone a transformers-based project */} {/* template. Swap in your data, edit the settings and hyperparameters and train, */} {/* evaluate, package and visualize your model. */} {/* */} The `[components]` section in the [`config.cfg`](/api/data-formats#config) describes the pipeline components and the settings used to construct them, including their model implementation. Here's a config snippet for the [`Transformer`](/api/transformer) component, along with matching Python code. In this case, the `[components.transformer]` block describes the `transformer` component: > #### Python equivalent > > ```python > from spacy_transformers import Transformer, TransformerModel > from spacy_transformers.annotation_setters import null_annotation_setter > from spacy_transformers.span_getters import get_doc_spans > > trf = Transformer( > nlp.vocab, > TransformerModel( > "bert-base-cased", > get_spans=get_doc_spans, > tokenizer_config={"use_fast": True}, > ), > set_extra_annotations=null_annotation_setter, > max_batch_items=4096, > ) > ``` ```ini {title="config.cfg",excerpt="true"} [components.transformer] factory = "transformer" max_batch_items = 4096 [components.transformer.model] @architectures = "spacy-transformers.TransformerModel.v3" name = "bert-base-cased" tokenizer_config = {"use_fast": true} [components.transformer.model.get_spans] @span_getters = "spacy-transformers.doc_spans.v1" [components.transformer.set_extra_annotations] @annotation_setters = "spacy-transformers.null_annotation_setter.v1" ``` The `[components.transformer.model]` block describes the `model` argument passed to the transformer component. It's a Thinc [`Model`](https://thinc.ai/docs/api-model) object that will be passed into the component. Here, it references the function [spacy-transformers.TransformerModel.v3](/api/architectures#TransformerModel) registered in the [`architectures` registry](/api/top-level#registry). If a key in a block starts with `@`, it's **resolved to a function** and all other settings are passed to the function as arguments. In this case, `name`, `tokenizer_config` and `get_spans`. `get_spans` is a function that takes a batch of `Doc` objects and returns lists of potentially overlapping `Span` objects to process by the transformer. Several [built-in functions](/api/transformer#span_getters) are available – for example, to process the whole document or individual sentences. When the config is resolved, the function is created and passed into the model as an argument. The `name` value is the name of any [HuggingFace model](huggingface-models), which will be downloaded automatically the first time it's used. You can also use a local file path. For full details, see the [`TransformerModel` docs](/api/architectures#TransformerModel). [huggingface-models]: https://huggingface.co/models?library=pytorch&sort=downloads A wide variety of PyTorch models are supported, but some might not work. If a model doesn't seem to work feel free to open an [issue](https://github.com/explosion/spacy/issues). Additionally note that Transformers loaded in spaCy can only be used for tensors, and pretrained task-specific heads or text generation features cannot be used as part of the `transformer` pipeline component. Remember that the `config.cfg` used for training should contain **no missing values** and requires all settings to be defined. You don't want any hidden defaults creeping in and changing your results! spaCy will tell you if settings are missing, and you can run [`spacy init fill-config`](/api/cli#init-fill-config) to automatically fill in all defaults. ### Customizing the settings {id="transformers-training-custom-settings"} To change any of the settings, you can edit the `config.cfg` and re-run the training. To change any of the functions, like the span getter, you can replace the name of the referenced function – e.g. `@span_getters = "spacy-transformers.sent_spans.v1"` to process sentences. You can also register your own functions using the [`span_getters` registry](/api/top-level#registry). For instance, the following custom function returns [`Span`](/api/span) objects following sentence boundaries, unless a sentence succeeds a certain amount of tokens, in which case subsentences of at most `max_length` tokens are returned. > #### config.cfg > > ```ini > [components.transformer.model.get_spans] > @span_getters = "custom_sent_spans" > max_length = 25 > ``` ```python {title="code.py"} import spacy_transformers @spacy_transformers.registry.span_getters("custom_sent_spans") def configure_custom_sent_spans(max_length: int): def get_custom_sent_spans(docs): spans = [] for doc in docs: spans.append([]) for sent in doc.sents: start = 0 end = max_length while end <= len(sent): spans[-1].append(sent[start:end]) start += max_length end += max_length if start < len(sent): spans[-1].append(sent[start:len(sent)]) return spans return get_custom_sent_spans ``` To resolve the config during training, spaCy needs to know about your custom function. You can make it available via the `--code` argument that can point to a Python file. For more details on training with custom code, see the [training documentation](/usage/training#custom-functions). ```bash python -m spacy train ./config.cfg --code ./code.py ``` ### Customizing the model implementations {id="training-custom-model"} The [`Transformer`](/api/transformer) component expects a Thinc [`Model`](https://thinc.ai/docs/api-model) object to be passed in as its `model` argument. You're not limited to the implementation provided by `spacy-transformers` – the only requirement is that your registered function must return an object of type ~~Model[List[Doc], FullTransformerBatch]~~: that is, a Thinc model that takes a list of [`Doc`](/api/doc) objects, and returns a [`FullTransformerBatch`](/api/transformer#fulltransformerbatch) object with the transformer data. The same idea applies to task models that power the **downstream components**. Most of spaCy's built-in model creation functions support a `tok2vec` argument, which should be a Thinc layer of type ~~Model[List[Doc], List[Floats2d]]~~. This is where we'll plug in our transformer model, using the [TransformerListener](/api/architectures#TransformerListener) layer, which sneakily delegates to the `Transformer` pipeline component. ```ini {title="config.cfg (excerpt)",highlight="12"} [components.ner] factory = "ner" [nlp.pipeline.ner.model] @architectures = "spacy.TransitionBasedParser.v2" state_type = "ner" extra_state_tokens = false hidden_width = 128 maxout_pieces = 3 use_upper = false [nlp.pipeline.ner.model.tok2vec] @architectures = "spacy-transformers.TransformerListener.v1" grad_factor = 1.0 [nlp.pipeline.ner.model.tok2vec.pooling] @layers = "reduce_mean.v1" ``` The [TransformerListener](/api/architectures#TransformerListener) layer expects a [pooling layer](https://thinc.ai/docs/api-layers#reduction-ops) as the argument `pooling`, which needs to be of type ~~Model[Ragged, Floats2d]~~. This layer determines how the vector for each spaCy token will be computed from the zero or more source rows the token is aligned against. Here we use the [`reduce_mean`](https://thinc.ai/docs/api-layers#reduce_mean) layer, which averages the wordpiece rows. We could instead use [`reduce_max`](https://thinc.ai/docs/api-layers#reduce_max), or a custom function you write yourself. You can have multiple components all listening to the same transformer model, and all passing gradients back to it. By default, all of the gradients will be **equally weighted**. You can control this with the `grad_factor` setting, which lets you reweight the gradients from the different listeners. For instance, setting `grad_factor = 0` would disable gradients from one of the listeners, while `grad_factor = 2.0` would multiply them by 2. This is similar to having a custom learning rate for each component. Instead of a constant, you can also provide a schedule, allowing you to freeze the shared parameters at the start of training. ## Static vectors {id="static-vectors"} If your pipeline includes a **word vectors table**, you'll be able to use the `.similarity()` method on the [`Doc`](/api/doc), [`Span`](/api/span), [`Token`](/api/token) and [`Lexeme`](/api/lexeme) objects. You'll also be able to access the vectors using the `.vector` attribute, or you can look up one or more vectors directly using the [`Vocab`](/api/vocab) object. Pipelines with word vectors can also **use the vectors as features** for the statistical models, which can **improve the accuracy** of your components. Word vectors in spaCy are "static" in the sense that they are not learned parameters of the statistical models, and spaCy itself does not feature any algorithms for learning word vector tables. You can train a word vectors table using tools such as [floret](https://github.com/explosion/floret), [Gensim](https://radimrehurek.com/gensim/), [FastText](https://fasttext.cc/) or [GloVe](https://nlp.stanford.edu/projects/glove/), or download existing pretrained vectors. The [`init vectors`](/api/cli#init-vectors) command lets you convert vectors for use with spaCy and will give you a directory you can load or refer to in your [training configs](/usage/training#config). For more details on loading word vectors into spaCy, using them for similarity and improving word vector coverage by truncating and pruning the vectors, see the usage guide on [word vectors and similarity](/usage/linguistic-features#vectors-similarity). ### Using word vectors in your models {id="word-vectors-models"} Many neural network models are able to use word vector tables as additional features, which sometimes results in significant improvements in accuracy. spaCy's built-in embedding layer, [MultiHashEmbed](/api/architectures#MultiHashEmbed), can be configured to use word vector tables using the `include_static_vectors` flag. ```ini [tagger.model.tok2vec.embed] @architectures = "spacy.MultiHashEmbed.v2" width = 128 attrs = ["LOWER","PREFIX","SUFFIX","SHAPE"] rows = [5000,2500,2500,2500] include_static_vectors = true ``` The configuration system will look up the string `"spacy.MultiHashEmbed.v2"` in the `architectures` [registry](/api/top-level#registry), and call the returned object with the rest of the arguments from the block. This will result in a call to the [`MultiHashEmbed`](https://github.com/explosion/spacy/tree/develop/spacy/ml/models/tok2vec.py) function, which will return a [Thinc](https://thinc.ai) model object with the type signature ~~Model[List[Doc], List[Floats2d]]~~. Because the embedding layer takes a list of `Doc` objects as input, it does not need to store a copy of the vectors table. The vectors will be retrieved from the `Doc` objects that are passed in, via the `doc.vocab.vectors` attribute. This part of the process is handled by the [StaticVectors](/api/architectures#StaticVectors) layer. #### Creating a custom embedding layer {id="custom-embedding-layer"} The [MultiHashEmbed](/api/architectures#StaticVectors) layer is spaCy's recommended strategy for constructing initial word representations for your neural network models, but you can also implement your own. You can register any function to a string name, and then reference that function within your config (see the [training docs](/usage/training) for more details). To try this out, you can save the following little example to a new Python file: ```python from spacy.ml.staticvectors import StaticVectors from spacy.util import registry print("I was imported!") @registry.architectures("my_example.MyEmbedding.v1") def MyEmbedding(output_width: int) -> Model[List[Doc], List[Floats2d]]: print("I was called!") return StaticVectors(nO=output_width) ``` If you pass the path to your file to the [`spacy train`](/api/cli#train) command using the `--code` argument, your file will be imported, which means the decorator registering the function will be run. Your function is now on equal footing with any of spaCy's built-ins, so you can drop it in instead of any other model with the same input and output signature. For instance, you could use it in the tagger model as follows: ```ini [tagger.model.tok2vec.embed] @architectures = "my_example.MyEmbedding.v1" output_width = 128 ``` Now that you have a custom function wired into the network, you can start implementing the logic you're interested in. For example, let's say you want to try a relatively simple embedding strategy that makes use of static word vectors, but combines them via summation with a smaller table of learned embeddings. ```python from thinc.api import add, chain, remap_ids, Embed from spacy.ml.staticvectors import StaticVectors from spacy.ml.featureextractor import FeatureExtractor from spacy.util import registry @registry.architectures("my_example.MyEmbedding.v1") def MyCustomVectors( output_width: int, vector_width: int, embed_rows: int, key2row: Dict[int, int] ) -> Model[List[Doc], List[Floats2d]]: return add( StaticVectors(nO=output_width), chain( FeatureExtractor(["ORTH"]), remap_ids(key2row), Embed(nO=output_width, nV=embed_rows) ) ) ``` #### Creating a custom vectors implementation {id="custom-vectors",version="3.7"} You can specify a custom registered vectors class under `[nlp.vectors]` in order to use static vectors in formats other than the ones supported by [`Vectors`](/api/vectors). Extend the abstract [`BaseVectors`](/api/basevectors) class to implement your custom vectors. As an example, the following `BPEmbVectors` class implements support for [BPEmb subword embeddings](https://bpemb.h-its.org/): ```python # requires: pip install bpemb import warnings from pathlib import Path from typing import Callable, Optional, cast from bpemb import BPEmb from thinc.api import Ops, get_current_ops from thinc.backends import get_array_ops from thinc.types import Floats2d from spacy.strings import StringStore from spacy.util import registry from spacy.vectors import BaseVectors from spacy.vocab import Vocab class BPEmbVectors(BaseVectors): def __init__( self, *, strings: Optional[StringStore] = None, lang: Optional[str] = None, vs: Optional[int] = None, dim: Optional[int] = None, cache_dir: Optional[Path] = None, encode_extra_options: Optional[str] = None, model_file: Optional[Path] = None, emb_file: Optional[Path] = None, ): kwargs = {} if lang is not None: kwargs["lang"] = lang if vs is not None: kwargs["vs"] = vs if dim is not None: kwargs["dim"] = dim if cache_dir is not None: kwargs["cache_dir"] = cache_dir if encode_extra_options is not None: kwargs["encode_extra_options"] = encode_extra_options if model_file is not None: kwargs["model_file"] = model_file if emb_file is not None: kwargs["emb_file"] = emb_file self.bpemb = BPEmb(**kwargs) self.strings = strings self.name = repr(self.bpemb) self.n_keys = -1 self.mode = "BPEmb" self.to_ops(get_current_ops()) def __contains__(self, key): return True def is_full(self): return True def add(self, key, *, vector=None, row=None): warnings.warn( ( "Skipping BPEmbVectors.add: the bpemb vector table cannot be " "modified. Vectors are calculated from bytepieces." ) ) return -1 def __getitem__(self, key): return self.get_batch([key])[0] def get_batch(self, keys): keys = [self.strings.as_string(key) for key in keys] bp_ids = self.bpemb.encode_ids(keys) ops = get_array_ops(self.bpemb.emb.vectors) indices = ops.asarray(ops.xp.hstack(bp_ids), dtype="int32") lengths = ops.asarray([len(x) for x in bp_ids], dtype="int32") vecs = ops.reduce_mean(cast(Floats2d, self.bpemb.emb.vectors[indices]), lengths) return vecs @property def shape(self): return self.bpemb.vectors.shape def __len__(self): return self.shape[0] @property def vectors_length(self): return self.shape[1] @property def size(self): return self.bpemb.vectors.size def to_ops(self, ops: Ops): self.bpemb.emb.vectors = ops.asarray(self.bpemb.emb.vectors) @registry.vectors("BPEmbVectors.v1") def create_bpemb_vectors( lang: Optional[str] = "multi", vs: Optional[int] = None, dim: Optional[int] = None, cache_dir: Optional[Path] = None, encode_extra_options: Optional[str] = None, model_file: Optional[Path] = None, emb_file: Optional[Path] = None, ) -> Callable[[Vocab], BPEmbVectors]: def bpemb_vectors_factory(vocab: Vocab) -> BPEmbVectors: return BPEmbVectors( strings=vocab.strings, lang=lang, vs=vs, dim=dim, cache_dir=cache_dir, encode_extra_options=encode_extra_options, model_file=model_file, emb_file=emb_file, ) return bpemb_vectors_factory ``` Note that the serialization methods are not implemented, so the embeddings are loaded from your local cache or downloaded by `BPEmb` each time the pipeline is loaded. To use this in your pipeline, specify this registered function under `[nlp.vectors]` in your config: ```ini [nlp.vectors] @vectors = "BPEmbVectors.v1" lang = "en" ``` Or specify it when creating a blank pipeline: ```python nlp = spacy.blank("en", config={"nlp.vectors": {"@vectors": "BPEmbVectors.v1", "lang": "en"}}) ``` Remember to include this code with `--code` when using [`spacy train`](/api/cli#train) and [`spacy package`](/api/cli#package). ## Pretraining {id="pretraining"} The [`spacy pretrain`](/api/cli#pretrain) command lets you initialize your models with **information from raw text**. Without pretraining, the models for your components will usually be initialized randomly. The idea behind pretraining is simple: random probably isn't optimal, so if we have some text to learn from, we can probably find a way to get the model off to a better start. Pretraining uses the same [`config.cfg`](/usage/training#config) file as the regular training, which helps keep the settings and hyperparameters consistent. The additional `[pretraining]` section has several configuration subsections that are familiar from the training block: the `[pretraining.batcher]`, `[pretraining.optimizer]` and `[pretraining.corpus]` all work the same way and expect the same types of objects, although for pretraining your corpus does not need to have any annotations, so you will often use a different reader, such as the [`JsonlCorpus`](/api/top-level#jsonlcorpus). > #### Raw text format > > The raw text can be provided in spaCy's > [binary `.spacy` format](/api/data-formats#training) consisting of serialized > `Doc` objects or as a JSONL (newline-delimited JSON) with a key `"text"` per > entry. This allows the data to be read in line by line, while also allowing > you to include newlines in the texts. > > ```json > {"text": "Can I ask where you work now and what you do, and if you enjoy it?"} > {"text": "They may just pull out of the Seattle market completely, at least until they have autonomous vehicles."} > ``` > > You can also use your own custom corpus loader instead. You can add a `[pretraining]` block to your config by setting the `--pretraining` flag on [`init config`](/api/cli#init-config) or [`init fill-config`](/api/cli#init-fill-config): ```bash $ python -m spacy init fill-config config.cfg config_pretrain.cfg --pretraining ``` You can then run [`spacy pretrain`](/api/cli#pretrain) with the updated config and pass in optional config overrides, like the path to the raw text file: ```bash $ python -m spacy pretrain config_pretrain.cfg ./output --paths.raw_text text.jsonl ``` The following defaults are used for the `[pretraining]` block and merged into your existing config when you run [`init config`](/api/cli#init-config) or [`init fill-config`](/api/cli#init-fill-config) with `--pretraining`. If needed, you can [configure](#pretraining-configure) the settings and hyperparameters or change the [objective](#pretraining-objectives). ```ini %%GITHUB_SPACY/spacy/default_config_pretraining.cfg ``` ### How pretraining works {id="pretraining-details"} The impact of [`spacy pretrain`](/api/cli#pretrain) varies, but it will usually be worth trying if you're **not using a transformer** model and you have **relatively little training data** (for instance, fewer than 5,000 sentences). A good rule of thumb is that pretraining will generally give you a similar accuracy improvement to using word vectors in your model. If word vectors have given you a 10% error reduction, pretraining with spaCy might give you another 10%, for a 20% error reduction in total. The [`spacy pretrain`](/api/cli#pretrain) command will take a **specific subnetwork** within one of your components, and add additional layers to build a network for a temporary task that forces the model to learn something about sentence structure and word cooccurrence statistics. Pretraining produces a **binary weights file** that can be loaded back in at the start of training, using the configuration option `initialize.init_tok2vec`. The weights file specifies an initial set of weights. Training then proceeds as normal. You can only pretrain one subnetwork from your pipeline at a time, and the subnetwork must be typed ~~Model[List[Doc], List[Floats2d]]~~ (i.e. it has to be a "tok2vec" layer). The most common workflow is to use the [`Tok2Vec`](/api/tok2vec) component to create a shared token-to-vector layer for several components of your pipeline, and apply pretraining to its whole model. #### Configuring the pretraining {id="pretraining-configure"} The [`spacy pretrain`](/api/cli#pretrain) command is configured using the `[pretraining]` section of your [config file](/usage/training#config). The `component` and `layer` settings tell spaCy how to **find the subnetwork** to pretrain. The `layer` setting should be either the empty string (to use the whole model), or a [node reference](https://thinc.ai/docs/usage-models#model-state). Most of spaCy's built-in model architectures have a reference named `"tok2vec"` that will refer to the right layer. ```ini {title="config.cfg"} # 1. Use the whole model of the "tok2vec" component [pretraining] component = "tok2vec" layer = "" # 2. Pretrain the "tok2vec" node of the "textcat" component [pretraining] component = "textcat" layer = "tok2vec" ``` #### Connecting pretraining to training {id="pretraining-training"} To benefit from pretraining, your training step needs to know to initialize its `tok2vec` component with the weights learned from the pretraining step. You do this by setting `initialize.init_tok2vec` to the filename of the `.bin` file that you want to use from pretraining. A pretraining step that runs for 5 epochs with an output path of `pretrain/`, as an example, produces `pretrain/model0.bin` through `pretrain/model4.bin` plus a copy of the last iteration as `pretrain/model-last.bin`. Additionally, you can configure `n_save_epoch` to tell pretraining in which epoch interval it should save the current training progress. To use the final output to initialize your `tok2vec` layer, you could fill in this value in your config file: ```ini {title="config.cfg"} [paths] init_tok2vec = "pretrain/model-last.bin" [initialize] init_tok2vec = ${paths.init_tok2vec} ``` The outputs of `spacy pretrain` are not the same data format as the pre-packaged static word vectors that would go into [`initialize.vectors`](/api/data-formats#config-initialize). The pretraining output consists of the weights that the `tok2vec` component should start with in an existing pipeline, so it goes in `initialize.init_tok2vec`. #### Pretraining objectives {id="pretraining-objectives"} > ```ini > ### Characters objective > [pretraining.objective] > @architectures = "spacy.PretrainCharacters.v1" > maxout_pieces = 3 > hidden_size = 300 > n_characters = 4 > ``` > > ```ini > ### Vectors objective > [pretraining.objective] > @architectures = "spacy.PretrainVectors.v1" > maxout_pieces = 3 > hidden_size = 300 > loss = "cosine" > ``` Two pretraining objectives are available, both of which are variants of the cloze task [Devlin et al. (2018)](https://arxiv.org/abs/1810.04805) introduced for BERT. The objective can be defined and configured via the `[pretraining.objective]` config block. - [`PretrainCharacters`](/api/architectures#pretrain_chars): The `"characters"` objective asks the model to predict some number of leading and trailing UTF-8 bytes for the words. For instance, setting `n_characters = 2`, the model will try to predict the first two and last two characters of the word. - [`PretrainVectors`](/api/architectures#pretrain_vectors): The `"vectors"` objective asks the model to predict the word's vector, from a static embeddings table. This requires a word vectors model to be trained and loaded. The vectors objective can optimize either a cosine or an L2 loss. We've generally found cosine loss to perform better. These pretraining objectives use a trick that we term **language modelling with approximate outputs (LMAO)**. The motivation for the trick is that predicting an exact word ID introduces a lot of incidental complexity. You need a large output layer, and even then, the vocabulary is too large, which motivates tokenization schemes that do not align to actual word boundaries. At the end of training, the output layer will be thrown away regardless: we just want a task that forces the network to model something about word cooccurrence statistics. Predicting leading and trailing characters does that more than adequately, as the exact word sequence could be recovered with high accuracy if the initial and trailing characters are predicted accurately. With the vectors objective, the pretraining uses the embedding space learned by an algorithm such as [GloVe](https://nlp.stanford.edu/projects/glove/) or [Word2vec](https://code.google.com/archive/p/word2vec/), allowing the model to focus on the contextual modelling we actual care about.