from typing import Callable, Protocol, Iterator, Optional, Union, Tuple, Any, overload from thinc.types import Floats1d, Ints2d, FloatsXd from .doc import Doc from .token import Token from .underscore import Underscore from ..lexeme import Lexeme from ..vocab import Vocab class SpanMethod(Protocol): def __call__(self: Span, *args: Any, **kwargs: Any) -> Any: ... # type: ignore[misc] class Span: @classmethod def set_extension( cls, name: str, default: Optional[Any] = ..., getter: Optional[Callable[[Span], Any]] = ..., setter: Optional[Callable[[Span, Any], None]] = ..., method: Optional[SpanMethod] = ..., force: bool = ..., ) -> None: ... @classmethod def get_extension( cls, name: str ) -> Tuple[ Optional[Any], Optional[SpanMethod], Optional[Callable[[Span], Any]], Optional[Callable[[Span, Any], None]], ]: ... @classmethod def has_extension(cls, name: str) -> bool: ... @classmethod def remove_extension( cls, name: str ) -> Tuple[ Optional[Any], Optional[SpanMethod], Optional[Callable[[Span], Any]], Optional[Callable[[Span, Any], None]], ]: ... def __init__( self, doc: Doc, start: int, end: int, label: Union[str, int] = ..., vector: Optional[Floats1d] = ..., vector_norm: Optional[float] = ..., kb_id: Union[str, int] = ..., span_id: Union[str, int] = ..., ) -> None: ... def __richcmp__(self, other: Span, op: int) -> bool: ... def __hash__(self) -> int: ... def __len__(self) -> int: ... def __repr__(self) -> str: ... @overload def __getitem__(self, i: int) -> Token: ... @overload def __getitem__(self, i: slice) -> Span: ... def __iter__(self) -> Iterator[Token]: ... @property def _(self) -> Underscore: ... def as_doc(self, *, copy_user_data: bool = ...) -> Doc: ... def get_lca_matrix(self) -> Ints2d: ... def similarity(self, other: Union[Doc, Span, Token, Lexeme]) -> float: ... @property def doc(self) -> Doc: ... @property def vocab(self) -> Vocab: ... @property def sent(self) -> Span: ... @property def ents(self) -> Tuple[Span]: ... @property def has_vector(self) -> bool: ... @property def vector(self) -> Floats1d: ... @property def vector_norm(self) -> float: ... @property def tensor(self) -> FloatsXd: ... @property def sentiment(self) -> float: ... @property def text(self) -> str: ... @property def text_with_ws(self) -> str: ... @property def noun_chunks(self) -> Iterator[Span]: ... @property def root(self) -> Token: ... def char_span( self, start_idx: int, end_idx: int, label: int = ..., kb_id: int = ..., vector: Optional[Floats1d] = ..., ) -> Span: ... @property def conjuncts(self) -> Tuple[Token]: ... @property def lefts(self) -> Iterator[Token]: ... @property def rights(self) -> Iterator[Token]: ... @property def n_lefts(self) -> int: ... @property def n_rights(self) -> int: ... @property def subtree(self) -> Iterator[Token]: ... start: int end: int start_char: int end_char: int @property def label(self) -> int: ... @property def kb_id(self) -> int: ... @property def id(self) -> int: ... @property def ent_id(self) -> int: ... @property def orth_(self) -> str: ... @property def lemma_(self) -> str: ... @property def label_(self) -> str: ... @property def kb_id_(self) -> str: ... @property def id_(self) -> str: ... @property def ent_id_(self) -> str: ...