import itertools import pytest from spacy.language import Language from spacy.tokens import Doc, Span from spacy.vocab import Vocab from spacy.training import Example from spacy.lang.en import English from spacy.lang.de import German from spacy.util import registry import spacy from .util import add_vecs_to_vocab, assert_docs_equal @pytest.fixture def nlp(): nlp = Language(Vocab()) textcat = nlp.add_pipe("textcat") for label in ("POSITIVE", "NEGATIVE"): textcat.add_label(label) nlp.initialize() return nlp def test_language_update(nlp): text = "hello world" annots = {"cats": {"POSITIVE": 1.0, "NEGATIVE": 0.0}} wrongkeyannots = {"LABEL": True} doc = Doc(nlp.vocab, words=text.split(" ")) example = Example.from_dict(doc, annots) nlp.update([example]) # Not allowed to call with just one Example with pytest.raises(TypeError): nlp.update(example) # Update with text and dict: not supported anymore since v.3 with pytest.raises(TypeError): nlp.update((text, annots)) # Update with doc object and dict with pytest.raises(TypeError): nlp.update((doc, annots)) # Create examples badly with pytest.raises(ValueError): example = Example.from_dict(doc, None) with pytest.raises(KeyError): example = Example.from_dict(doc, wrongkeyannots) def test_language_evaluate(nlp): text = "hello world" annots = {"doc_annotation": {"cats": {"POSITIVE": 1.0, "NEGATIVE": 0.0}}} doc = Doc(nlp.vocab, words=text.split(" ")) example = Example.from_dict(doc, annots) scores = nlp.evaluate([example]) assert scores["speed"] > 0 # test with generator scores = nlp.evaluate(eg for eg in [example]) assert scores["speed"] > 0 # Not allowed to call with just one Example with pytest.raises(TypeError): nlp.evaluate(example) # Evaluate with text and dict: not supported anymore since v.3 with pytest.raises(TypeError): nlp.evaluate([(text, annots)]) # Evaluate with doc object and dict with pytest.raises(TypeError): nlp.evaluate([(doc, annots)]) with pytest.raises(TypeError): nlp.evaluate([text, annots]) def test_evaluate_no_pipe(nlp): """Test that docs are processed correctly within Language.pipe if the component doesn't expose a .pipe method.""" @Language.component("test_evaluate_no_pipe") def pipe(doc): return doc text = "hello world" annots = {"cats": {"POSITIVE": 1.0, "NEGATIVE": 0.0}} nlp = Language(Vocab()) doc = nlp(text) nlp.add_pipe("test_evaluate_no_pipe") nlp.evaluate([Example.from_dict(doc, annots)]) @Language.component("test_language_vector_modification_pipe") def vector_modification_pipe(doc): doc.vector += 1 return doc @Language.component("test_language_userdata_pipe") def userdata_pipe(doc): doc.user_data["foo"] = "bar" return doc @Language.component("test_language_ner_pipe") def ner_pipe(doc): span = Span(doc, 0, 1, label="FIRST") doc.ents += (span,) return doc @pytest.fixture def sample_vectors(): return [ ("spacy", [-0.1, -0.2, -0.3]), ("world", [-0.2, -0.3, -0.4]), ("pipe", [0.7, 0.8, 0.9]), ] @pytest.fixture def nlp2(nlp, sample_vectors): add_vecs_to_vocab(nlp.vocab, sample_vectors) nlp.add_pipe("test_language_vector_modification_pipe") nlp.add_pipe("test_language_ner_pipe") nlp.add_pipe("test_language_userdata_pipe") return nlp @pytest.fixture def texts(): data = [ "Hello world.", "This is spacy.", "You can use multiprocessing with pipe method.", "Please try!", ] return data @pytest.mark.parametrize("n_process", [1, 2]) def test_language_pipe(nlp2, n_process, texts): texts = texts * 10 expecteds = [nlp2(text) for text in texts] docs = nlp2.pipe(texts, n_process=n_process, batch_size=2) for doc, expected_doc in zip(docs, expecteds): assert_docs_equal(doc, expected_doc) @pytest.mark.parametrize("n_process", [1, 2]) def test_language_pipe_stream(nlp2, n_process, texts): # check if nlp.pipe can handle infinite length iterator properly. stream_texts = itertools.cycle(texts) texts0, texts1 = itertools.tee(stream_texts) expecteds = (nlp2(text) for text in texts0) docs = nlp2.pipe(texts1, n_process=n_process, batch_size=2) n_fetch = 20 for doc, expected_doc in itertools.islice(zip(docs, expecteds), n_fetch): assert_docs_equal(doc, expected_doc) def test_language_from_config_before_after_init(): name = "test_language_from_config_before_after_init" ran_before = False ran_after = False ran_after_pipeline = False ran_before_init = False ran_after_init = False @registry.callbacks(f"{name}_before") def make_before_creation(): def before_creation(lang_cls): nonlocal ran_before ran_before = True assert lang_cls is English lang_cls.Defaults.foo = "bar" return lang_cls return before_creation @registry.callbacks(f"{name}_after") def make_after_creation(): def after_creation(nlp): nonlocal ran_after ran_after = True assert isinstance(nlp, English) assert nlp.pipe_names == [] assert nlp.Defaults.foo == "bar" nlp.meta["foo"] = "bar" return nlp return after_creation @registry.callbacks(f"{name}_after_pipeline") def make_after_pipeline_creation(): def after_pipeline_creation(nlp): nonlocal ran_after_pipeline ran_after_pipeline = True assert isinstance(nlp, English) assert nlp.pipe_names == ["sentencizer"] assert nlp.Defaults.foo == "bar" assert nlp.meta["foo"] == "bar" nlp.meta["bar"] = "baz" return nlp return after_pipeline_creation @registry.callbacks(f"{name}_before_init") def make_before_init(): def before_init(nlp): nonlocal ran_before_init ran_before_init = True nlp.meta["before_init"] = "before" return nlp return before_init @registry.callbacks(f"{name}_after_init") def make_after_init(): def after_init(nlp): nonlocal ran_after_init ran_after_init = True nlp.meta["after_init"] = "after" return nlp return after_init config = { "nlp": { "pipeline": ["sentencizer"], "before_creation": {"@callbacks": f"{name}_before"}, "after_creation": {"@callbacks": f"{name}_after"}, "after_pipeline_creation": {"@callbacks": f"{name}_after_pipeline"}, }, "components": {"sentencizer": {"factory": "sentencizer"}}, "initialize": { "before_init": {"@callbacks": f"{name}_before_init"}, "after_init": {"@callbacks": f"{name}_after_init"}, }, } nlp = English.from_config(config) assert nlp.Defaults.foo == "bar" assert nlp.meta["foo"] == "bar" assert nlp.meta["bar"] == "baz" assert "before_init" not in nlp.meta assert "after_init" not in nlp.meta assert nlp.pipe_names == ["sentencizer"] assert nlp("text") nlp.initialize() assert nlp.meta["before_init"] == "before" assert nlp.meta["after_init"] == "after" assert all( [ran_before, ran_after, ran_after_pipeline, ran_before_init, ran_after_init] ) def test_language_from_config_before_after_init_invalid(): """Check that an error is raised if function doesn't return nlp.""" name = "test_language_from_config_before_after_init_invalid" registry.callbacks(f"{name}_before1", func=lambda: lambda nlp: None) registry.callbacks(f"{name}_before2", func=lambda: lambda nlp: nlp()) registry.callbacks(f"{name}_after1", func=lambda: lambda nlp: None) registry.callbacks(f"{name}_after1", func=lambda: lambda nlp: English) for callback_name in [f"{name}_before1", f"{name}_before2"]: config = {"nlp": {"before_creation": {"@callbacks": callback_name}}} with pytest.raises(ValueError): English.from_config(config) for callback_name in [f"{name}_after1", f"{name}_after2"]: config = {"nlp": {"after_creation": {"@callbacks": callback_name}}} with pytest.raises(ValueError): English.from_config(config) for callback_name in [f"{name}_after1", f"{name}_after2"]: config = {"nlp": {"after_pipeline_creation": {"@callbacks": callback_name}}} with pytest.raises(ValueError): English.from_config(config) def test_language_custom_tokenizer(): """Test that a fully custom tokenizer can be plugged in via the registry.""" name = "test_language_custom_tokenizer" class CustomTokenizer: """Dummy "tokenizer" that splits on spaces and adds prefix to each word.""" def __init__(self, nlp, prefix): self.vocab = nlp.vocab self.prefix = prefix def __call__(self, text): words = [f"{self.prefix}{word}" for word in text.split(" ")] return Doc(self.vocab, words=words) @registry.tokenizers(name) def custom_create_tokenizer(prefix: str = "_"): def create_tokenizer(nlp): return CustomTokenizer(nlp, prefix=prefix) return create_tokenizer config = {"nlp": {"tokenizer": {"@tokenizers": name}}} nlp = English.from_config(config) doc = nlp("hello world") assert [t.text for t in doc] == ["_hello", "_world"] doc = list(nlp.pipe(["hello world"]))[0] assert [t.text for t in doc] == ["_hello", "_world"] def test_language_from_config_invalid_lang(): """Test that calling Language.from_config raises an error and lang defined in config needs to match language-specific subclasses.""" config = {"nlp": {"lang": "en"}} with pytest.raises(ValueError): Language.from_config(config) with pytest.raises(ValueError): German.from_config(config) def test_spacy_blank(): nlp = spacy.blank("en") assert nlp.config["training"]["dropout"] == 0.1 config = {"training": {"dropout": 0.2}} meta = {"name": "my_custom_model"} nlp = spacy.blank("en", config=config, meta=meta) assert nlp.config["training"]["dropout"] == 0.2 assert nlp.meta["name"] == "my_custom_model" @pytest.mark.parametrize("value", [False, None, ["x", "y"], Language, Vocab]) def test_language_init_invalid_vocab(value): err_fragment = "invalid value" with pytest.raises(ValueError) as e: Language(value) assert err_fragment in str(e.value)