# cython: profile=True from __future__ import unicode_literals from __future__ import division from os import path import os import shutil import random import json import cython from thinc.features cimport Feature, count_feats cdef int arg_max(const weight_t* scores, const int n_classes) nogil: cdef int i cdef int best = 0 cdef weight_t mode = scores[0] for i in range(1, n_classes): if scores[i] > mode: mode = scores[i] best = i return best cdef class Model: def __init__(self, n_classes, templates, model_loc=None): if model_loc is not None and path.isdir(model_loc): model_loc = path.join(model_loc, 'model') self.n_classes = n_classes self._extractor = Extractor(templates) self._model = LinearModel(n_classes, self._extractor.n_templ) self.model_loc = model_loc if self.model_loc and path.exists(self.model_loc): self._model.load(self.model_loc, freq_thresh=0) cdef int update(self, atom_t* context, class_t guess, class_t gold, int cost) except -1: cdef int n_feats if cost == 0: self._model.update({}) else: feats = self._extractor.get_feats(context, &n_feats) counts = {gold: {}, guess: {}} count_feats(counts[gold], feats, n_feats, cost) count_feats(counts[guess], feats, n_feats, -cost) self._model.update(counts) def end_training(self): self._model.end_training() self._model.dump(self.model_loc, freq_thresh=0) cdef class HastyModel: def __init__(self, n_classes, hasty_templates, full_templates, model_dir): full_templates = tuple([t for t in full_templates if t not in hasty_templates]) self.mem = Pool() self.n_classes = n_classes self._scores = <weight_t*>self.mem.alloc(self.n_classes, sizeof(weight_t)) assert path.exists(model_dir) assert path.isdir(model_dir) self._hasty = Model(n_classes, hasty_templates, path.join(model_dir, 'hasty_model')) self._full = Model(n_classes, full_templates, path.join(model_dir, 'full_model')) self.hasty_cnt = 0 self.full_cnt = 0 cdef const weight_t* score(self, atom_t* context) except NULL: cdef int i hasty_scores = self._hasty.score(context) if will_use_hasty(hasty_scores, self._hasty.n_classes): self.hasty_cnt += 1 return hasty_scores else: self.full_cnt += 1 full_scores = self._full.score(context) for i in range(self.n_classes): self._scores[i] = full_scores[i] + hasty_scores[i] return self._scores cdef int update(self, atom_t* context, class_t guess, class_t gold, int cost) except -1: self._hasty.update(context, guess, gold, cost) self._full.update(context, guess, gold, cost) def end_training(self): self._hasty.end_training() self._full.end_training() @cython.cdivision(True) cdef bint will_use_hasty(const weight_t* scores, int n_classes) nogil: cdef: weight_t best_score, second_score int best, second if scores[0] >= scores[1]: best = 0 best_score = scores[0] second = 1 second_score = scores[1] else: best = 1 best_score = scores[1] second = 0 second_score = scores[0] cdef int i for i in range(2, n_classes): if scores[i] > best_score: second_score = best_score second = best best = i best_score = scores[i] elif scores[i] > second_score: second_score = scores[i] second = i return best_score > 0 and second_score < (best_score / 2)