import spacy from spacy.kb import KnowledgeBase def create_kb(): mykb = KnowledgeBase() print("kb size", len(mykb), mykb.get_size_entities(), mykb.get_size_aliases()) # adding entities entity_42 = "Q42" # douglas adams mykb.add_entity(entity_id=entity_42, prob=0.5) print(" adding entity", entity_42) entity_5301561 = "Q5301561" mykb.add_entity(entity_id=entity_5301561, prob=0.5) print(" adding entity", entity_5301561) print("kb size", len(mykb), mykb.get_size_entities(), mykb.get_size_aliases()) # adding aliases alias = "douglas" print(" adding alias", alias) mykb.add_alias(alias=alias, entities=["Q42", "Q5301561"], probabilities=[0.8, 0.2]) print("kb size", len(mykb), mykb.get_size_entities(), mykb.get_size_aliases()) print("candidates for", alias) candidates = mykb.get_candidates(alias) print(" ", candidates) def add_el(): nlp = spacy.load('en_core_web_sm') print("pipes before:", nlp.pipe_names) el_pipe = nlp.create_pipe(name='el') nlp.add_pipe(el_pipe, last=True) print("pipes after:", nlp.pipe_names) print() text = "The Hitchhiker's Guide to the Galaxy, written by Douglas Adams, reminds us to always bring our towel." doc = nlp(text) for token in doc: print("token", token.text, token.ent_type_, token.ent_kb_id_) print() for ent in doc.ents: print("ent", ent.text, ent.label_, ent.kb_id_) if __name__ == "__main__": # add_el() create_kb()