# cython: binding=True, infer_types=True, profile=True from typing import List, Iterable from libcpp.vector cimport vector from libc.stdint cimport int32_t, int8_t from libc.string cimport memset, memcmp from cymem.cymem cimport Pool from murmurhash.mrmr cimport hash64 import re import srsly import warnings from ..typedefs cimport attr_t from ..structs cimport TokenC from ..vocab cimport Vocab from ..tokens.doc cimport Doc, get_token_attr_for_matcher from ..tokens.span cimport Span from ..tokens.token cimport Token from ..tokens.morphanalysis cimport MorphAnalysis from ..attrs cimport ID, attr_id_t, NULL_ATTR, ORTH, POS, TAG, DEP, LEMMA, MORPH, ENT_IOB from .levenshtein import levenshtein_compare from ..schemas import validate_token_pattern from ..errors import Errors, MatchPatternError, Warnings from ..strings cimport get_string_id from ..attrs import IDS from ..util import registry DEF PADDING = 5 cdef class Matcher: """Match sequences of tokens, based on pattern rules. DOCS: https://spacy.io/api/matcher USAGE: https://spacy.io/usage/rule-based-matching """ def __init__(self, vocab, validate=True, *, fuzzy_compare=levenshtein_compare): """Create the Matcher. vocab (Vocab): The vocabulary object, which must be shared with the validate (bool): Validate all patterns added to this matcher. fuzzy_compare (Callable[[str, str, int], bool]): The comparison method for the FUZZY operators. """ self._extra_predicates = [] self._patterns = {} self._callbacks = {} self._filter = {} self._extensions = {} self._seen_attrs = set() self.vocab = vocab self.mem = Pool() self.validate = validate self._fuzzy_compare = fuzzy_compare def __reduce__(self): data = (self.vocab, self._patterns, self._callbacks, self.validate, self._fuzzy_compare) return (unpickle_matcher, data, None, None) def __len__(self): """Get the number of rules added to the matcher. Note that this only returns the number of rules (identical with the number of IDs), not the number of individual patterns. RETURNS (int): The number of rules. """ return len(self._patterns) def __contains__(self, key): """Check whether the matcher contains rules for a match ID. key (str): The match ID. RETURNS (bool): Whether the matcher contains rules for this match ID. """ return self.has_key(key) def add(self, key, patterns, *, on_match=None, greedy: str=None): """Add a match-rule to the matcher. A match-rule consists of: an ID key, an on_match callback, and one or more patterns. If the key exists, the patterns are appended to the previous ones, and the previous on_match callback is replaced. The `on_match` callback will receive the arguments `(matcher, doc, i, matches)`. You can also set `on_match` to `None` to not perform any actions. A pattern consists of one or more `token_specs`, where a `token_spec` is a dictionary mapping attribute IDs to values, and optionally a quantifier operator under the key "op". The available quantifiers are: '!': Negate the pattern, by requiring it to match exactly 0 times. '?': Make the pattern optional, by allowing it to match 0 or 1 times. '+': Require the pattern to match 1 or more times. '*': Allow the pattern to zero or more times. '{n}': Require the pattern to match exactly _n_ times. '{n,m}': Require the pattern to match at least _n_ but not more than _m_ times. '{n,}': Require the pattern to match at least _n_ times. '{,m}': Require the pattern to match at most _m_ times. The + and * operators return all possible matches (not just the greedy ones). However, the "greedy" argument can filter the final matches by returning a non-overlapping set per key, either taking preference to the first greedy match ("FIRST"), or the longest ("LONGEST"). Since spaCy v2.2.2, Matcher.add takes a list of patterns as the second argument, and the on_match callback is an optional keyword argument. key (Union[str, int]): The match ID. patterns (list): The patterns to add for the given key. on_match (callable): Optional callback executed on match. greedy (str): Optional filter: "FIRST" or "LONGEST". """ errors = {} if on_match is not None and not hasattr(on_match, "__call__"): raise ValueError(Errors.E171.format(name="Matcher", arg_type=type(on_match))) if patterns is None or not isinstance(patterns, List): raise ValueError(Errors.E948.format(name="Matcher", arg_type=type(patterns))) if greedy is not None and greedy not in ["FIRST", "LONGEST"]: raise ValueError(Errors.E947.format(expected=["FIRST", "LONGEST"], arg=greedy)) for i, pattern in enumerate(patterns): if len(pattern) == 0: raise ValueError(Errors.E012.format(key=key)) if not isinstance(pattern, list): raise ValueError(Errors.E178.format(pat=pattern, key=key)) if self.validate: errors[i] = validate_token_pattern(pattern) if any(err for err in errors.values()): raise MatchPatternError(key, errors) key = self._normalize_key(key) for pattern in patterns: try: specs = _preprocess_pattern(pattern, self.vocab, self._extensions, self._extra_predicates, self._fuzzy_compare) self.patterns.push_back(init_pattern(self.mem, key, specs)) for spec in specs: for attr, _ in spec[1]: self._seen_attrs.add(attr) except OverflowError, AttributeError: raise ValueError(Errors.E154.format()) from None self._patterns.setdefault(key, []) self._callbacks[key] = on_match self._filter[key] = greedy self._patterns[key].extend(patterns) def _require_patterns(self) -> None: """Raise a warning if this component has no patterns defined.""" if len(self) == 0: warnings.warn(Warnings.W036.format(name="matcher")) def remove(self, key): """Remove a rule from the matcher. A KeyError is raised if the key does not exist. key (str): The ID of the match rule. """ norm_key = self._normalize_key(key) if not norm_key in self._patterns: raise ValueError(Errors.E175.format(key=key)) self._patterns.pop(norm_key) self._callbacks.pop(norm_key) cdef int i = 0 while i < self.patterns.size(): pattern_key = get_ent_id(self.patterns.at(i)) if pattern_key == norm_key: self.patterns.erase(self.patterns.begin()+i) else: i += 1 def has_key(self, key): """Check whether the matcher has a rule with a given key. key (string or int): The key to check. RETURNS (bool): Whether the matcher has the rule. """ return self._normalize_key(key) in self._patterns def get(self, key, default=None): """Retrieve the pattern stored for a key. key (str / int): The key to retrieve. RETURNS (tuple): The rule, as an (on_match, patterns) tuple. """ key = self._normalize_key(key) if key not in self._patterns: return default return (self._callbacks[key], self._patterns[key]) def pipe(self, docs, batch_size=1000, return_matches=False, as_tuples=False): """Match a stream of documents, yielding them in turn. Deprecated as of spaCy v3.0. """ warnings.warn(Warnings.W105.format(matcher="Matcher"), DeprecationWarning) if as_tuples: for doc, context in docs: matches = self(doc) if return_matches: yield ((doc, matches), context) else: yield (doc, context) else: for doc in docs: matches = self(doc) if return_matches: yield (doc, matches) else: yield doc def __call__(self, object doclike, *, as_spans=False, allow_missing=False, with_alignments=False): """Find all token sequences matching the supplied pattern. doclike (Doc or Span): The document to match over. as_spans (bool): Return Span objects with labels instead of (match_id, start, end) tuples. allow_missing (bool): Whether to skip checks for missing annotation for attributes included in patterns. Defaults to False. with_alignments (bool): Return match alignment information, which is `List[int]` with length of matched span. Each entry denotes the corresponding index of token pattern. If as_spans is set to True, this setting is ignored. RETURNS (list): A list of `(match_id, start, end)` tuples, describing the matches. A match tuple describes a span `doc[start:end]`. The `match_id` is an integer. If as_spans is set to True, a list of Span objects is returned. If with_alignments is set to True and as_spans is set to False, A list of `(match_id, start, end, alignments)` tuples is returned. """ self._require_patterns() if isinstance(doclike, Doc): doc = doclike length = len(doc) elif isinstance(doclike, Span): doc = doclike.doc length = doclike.end - doclike.start else: raise ValueError(Errors.E195.format(good="Doc or Span", got=type(doclike).__name__)) # Skip alignments calculations if as_spans is set if as_spans: with_alignments = False cdef Pool tmp_pool = Pool() if not allow_missing: for attr in (TAG, POS, MORPH, LEMMA, DEP): if attr in self._seen_attrs and not doc.has_annotation(attr): if attr == TAG: pipe = "tagger" elif attr in (POS, MORPH): pipe = "morphologizer or tagger+attribute_ruler" elif attr == LEMMA: pipe = "lemmatizer" elif attr == DEP: pipe = "parser" error_msg = Errors.E155.format(pipe=pipe, attr=self.vocab.strings.as_string(attr)) raise ValueError(error_msg) if self.patterns.empty(): matches = [] else: matches = find_matches(&self.patterns[0], self.patterns.size(), doclike, length, extensions=self._extensions, predicates=self._extra_predicates, with_alignments=with_alignments) final_matches = [] pairs_by_id = {} # For each key, either add all matches, or only the filtered, # non-overlapping ones this `match` can be either (start, end) or # (start, end, alignments) depending on `with_alignments=` option. for key, *match in matches: # Adjust span matches to doc offsets if isinstance(doclike, Span): match[0] += doclike.start match[1] += doclike.start span_filter = self._filter.get(key) if span_filter is not None: pairs = pairs_by_id.get(key, []) pairs.append(match) pairs_by_id[key] = pairs else: final_matches.append((key, *match)) matched = tmp_pool.alloc(length, sizeof(char)) empty = tmp_pool.alloc(length, sizeof(char)) for key, pairs in pairs_by_id.items(): memset(matched, 0, length * sizeof(matched[0])) span_filter = self._filter.get(key) if span_filter == "FIRST": sorted_pairs = sorted(pairs, key=lambda x: (x[0], -x[1]), reverse=False) # sort by start elif span_filter == "LONGEST": sorted_pairs = sorted(pairs, key=lambda x: (x[1]-x[0], -x[0]), reverse=True) # reverse sort by length else: raise ValueError(Errors.E947.format(expected=["FIRST", "LONGEST"], arg=span_filter)) for match in sorted_pairs: start, end = match[:2] assert 0 <= start < end # Defend against segfaults span_len = end-start # If no tokens in the span have matched if memcmp(&matched[start], &empty[start], span_len * sizeof(matched[0])) == 0: final_matches.append((key, *match)) # Mark tokens that have matched memset(&matched[start], 1, span_len * sizeof(matched[0])) if as_spans: final_results = [] for key, start, end, *_ in final_matches: final_results.append(Span(doc, start, end, label=key)) elif with_alignments: # convert alignments List[Dict[str, int]] --> List[int] # when multiple alignment (belongs to the same length) is found, # keeps the alignment that has largest token_idx final_results = [] for key, start, end, alignments in final_matches: sorted_alignments = sorted(alignments, key=lambda x: (x['length'], x['token_idx']), reverse=False) alignments = [0] * (end-start) for align in sorted_alignments: if align['length'] >= end-start: continue # Since alignments are sorted in order of (length, token_idx) # this overwrites smaller token_idx when they have same length. alignments[align['length']] = align['token_idx'] final_results.append((key, start, end, alignments)) final_matches = final_results # for callbacks else: final_results = final_matches # perform the callbacks on the filtered set of results for i, (key, *_) in enumerate(final_matches): on_match = self._callbacks.get(key, None) if on_match is not None: on_match(self, doc, i, final_matches) return final_results def _normalize_key(self, key): if isinstance(key, str): return self.vocab.strings.add(key) else: return key def unpickle_matcher(vocab, patterns, callbacks, validate, fuzzy_compare): matcher = Matcher(vocab, validate=validate, fuzzy_compare=fuzzy_compare) for key, pattern in patterns.items(): callback = callbacks.get(key, None) matcher.add(key, pattern, on_match=callback) return matcher cdef find_matches(TokenPatternC** patterns, int n, object doclike, int length, extensions=None, predicates=tuple(), bint with_alignments=0): """Find matches in a doc, with a compiled array of patterns. Matches are returned as a list of (id, start, end) tuples or (id, start, end, alignments) tuples (if with_alignments != 0) To augment the compiled patterns, we optionally also take two Python lists. The "predicates" list contains functions that take a Python list and return a boolean value. It's mostly used for regular expressions. The "extensions" list contains functions that take a Python list and return an attr ID. It's mostly used for extension attributes. """ cdef vector[PatternStateC] states cdef vector[MatchC] matches cdef vector[vector[MatchAlignmentC]] align_states cdef vector[vector[MatchAlignmentC]] align_matches cdef PatternStateC state cdef int i, j, nr_extra_attr cdef Pool mem = Pool() output = [] if length == 0: # avoid any processing or mem alloc if the document is empty return output if len(predicates) > 0: predicate_cache = mem.alloc(length * len(predicates), sizeof(int8_t)) if extensions is not None and len(extensions) >= 1: nr_extra_attr = max(extensions.values()) + 1 extra_attr_values = mem.alloc(length * nr_extra_attr, sizeof(attr_t)) else: nr_extra_attr = 0 extra_attr_values = mem.alloc(length, sizeof(attr_t)) for i, token in enumerate(doclike): for name, index in extensions.items(): value = token._.get(name) if isinstance(value, str): value = token.vocab.strings[value] extra_attr_values[i * nr_extra_attr + index] = value # Main loop cdef int nr_predicate = len(predicates) for i in range(length): for j in range(n): states.push_back(PatternStateC(patterns[j], i, 0)) if with_alignments != 0: align_states.resize(states.size()) transition_states(states, matches, align_states, align_matches, predicate_cache, doclike[i], extra_attr_values, predicates, with_alignments) extra_attr_values += nr_extra_attr predicate_cache += len(predicates) # Handle matches that end in 0-width patterns finish_states(matches, states, align_matches, align_states, with_alignments) seen = set() for i in range(matches.size()): match = ( matches[i].pattern_id, matches[i].start, matches[i].start+matches[i].length ) # We need to deduplicate, because we could otherwise arrive at the same # match through two paths, e.g. .?.? matching 'a'. Are we matching the # first .?, or the second .? -- it doesn't matter, it's just one match. # Skip 0-length matches. (TODO: fix algorithm) if match not in seen and matches[i].length > 0: if with_alignments != 0: # since the length of align_matches equals to that of match, we can share same 'i' output.append(match + (align_matches[i],)) else: output.append(match) seen.add(match) return output cdef void transition_states(vector[PatternStateC]& states, vector[MatchC]& matches, vector[vector[MatchAlignmentC]]& align_states, vector[vector[MatchAlignmentC]]& align_matches, int8_t* cached_py_predicates, Token token, const attr_t* extra_attrs, py_predicates, bint with_alignments) except *: cdef int q = 0 cdef vector[PatternStateC] new_states cdef vector[vector[MatchAlignmentC]] align_new_states cdef int nr_predicate = len(py_predicates) for i in range(states.size()): if states[i].pattern.nr_py >= 1: update_predicate_cache(cached_py_predicates, states[i].pattern, token, py_predicates) action = get_action(states[i], token.c, extra_attrs, cached_py_predicates) if action == REJECT: continue # Keep only a subset of states (the active ones). Index q is the # states which are still alive. If we reject a state, we overwrite # it in the states list, because q doesn't advance. state = states[i] states[q] = state # Separate from states, performance is guaranteed for users who only need basic options (without alignments). # `align_states` always corresponds to `states` 1:1. if with_alignments != 0: align_state = align_states[i] align_states[q] = align_state while action in (RETRY, RETRY_ADVANCE, RETRY_EXTEND): # Update alignment before the transition of current state # 'MatchAlignmentC' maps 'original token index of current pattern' to 'current matching length' if with_alignments != 0: align_states[q].push_back(MatchAlignmentC(states[q].pattern.token_idx, states[q].length)) if action == RETRY_EXTEND: # This handles the 'extend' new_states.push_back( PatternStateC(pattern=states[q].pattern, start=state.start, length=state.length+1)) if with_alignments != 0: align_new_states.push_back(align_states[q]) if action == RETRY_ADVANCE: # This handles the 'advance' new_states.push_back( PatternStateC(pattern=states[q].pattern+1, start=state.start, length=state.length+1)) if with_alignments != 0: align_new_states.push_back(align_states[q]) states[q].pattern += 1 if states[q].pattern.nr_py != 0: update_predicate_cache(cached_py_predicates, states[q].pattern, token, py_predicates) action = get_action(states[q], token.c, extra_attrs, cached_py_predicates) # Update alignment before the transition of current state if with_alignments != 0: align_states[q].push_back(MatchAlignmentC(states[q].pattern.token_idx, states[q].length)) if action == REJECT: pass elif action == ADVANCE: states[q].pattern += 1 states[q].length += 1 q += 1 else: ent_id = get_ent_id(state.pattern) if action == MATCH: matches.push_back( MatchC(pattern_id=ent_id, start=state.start, length=state.length+1)) # `align_matches` always corresponds to `matches` 1:1 if with_alignments != 0: align_matches.push_back(align_states[q]) elif action == MATCH_DOUBLE: # push match without last token if length > 0 if state.length > 0: matches.push_back( MatchC(pattern_id=ent_id, start=state.start, length=state.length)) # MATCH_DOUBLE emits matches twice, # add one more to align_matches in order to keep 1:1 relationship if with_alignments != 0: align_matches.push_back(align_states[q]) # push match with last token matches.push_back( MatchC(pattern_id=ent_id, start=state.start, length=state.length+1)) # `align_matches` always corresponds to `matches` 1:1 if with_alignments != 0: align_matches.push_back(align_states[q]) elif action == MATCH_REJECT: matches.push_back( MatchC(pattern_id=ent_id, start=state.start, length=state.length)) # `align_matches` always corresponds to `matches` 1:1 if with_alignments != 0: align_matches.push_back(align_states[q]) elif action == MATCH_EXTEND: matches.push_back( MatchC(pattern_id=ent_id, start=state.start, length=state.length)) # `align_matches` always corresponds to `matches` 1:1 if with_alignments != 0: align_matches.push_back(align_states[q]) states[q].length += 1 q += 1 states.resize(q) for i in range(new_states.size()): states.push_back(new_states[i]) # `align_states` always corresponds to `states` 1:1 if with_alignments != 0: align_states.resize(q) for i in range(align_new_states.size()): align_states.push_back(align_new_states[i]) cdef int update_predicate_cache(int8_t* cache, const TokenPatternC* pattern, Token token, predicates) except -1: # If the state references any extra predicates, check whether they match. # These are cached, so that we don't call these potentially expensive # Python functions more than we need to. for i in range(pattern.nr_py): index = pattern.py_predicates[i] if cache[index] == 0: predicate = predicates[index] result = predicate(token) if result is True: cache[index] = 1 elif result is False: cache[index] = -1 elif result is None: pass else: raise ValueError(Errors.E125.format(value=result)) cdef void finish_states(vector[MatchC]& matches, vector[PatternStateC]& states, vector[vector[MatchAlignmentC]]& align_matches, vector[vector[MatchAlignmentC]]& align_states, bint with_alignments) except *: """Handle states that end in zero-width patterns.""" cdef PatternStateC state cdef vector[MatchAlignmentC] align_state for i in range(states.size()): state = states[i] if with_alignments != 0: align_state = align_states[i] while get_quantifier(state) in (ZERO_PLUS, ZERO_ONE): # Update alignment before the transition of current state if with_alignments != 0: align_state.push_back(MatchAlignmentC(state.pattern.token_idx, state.length)) is_final = get_is_final(state) if is_final: ent_id = get_ent_id(state.pattern) # `align_matches` always corresponds to `matches` 1:1 if with_alignments != 0: align_matches.push_back(align_state) matches.push_back( MatchC(pattern_id=ent_id, start=state.start, length=state.length)) break else: state.pattern += 1 cdef action_t get_action(PatternStateC state, const TokenC* token, const attr_t* extra_attrs, const int8_t* predicate_matches) nogil: """We need to consider: a) Does the token match the specification? [Yes, No] b) What's the quantifier? [1, 0+, ?] c) Is this the last specification? [final, non-final] We can transition in the following ways: a) Do we emit a match? b) Do we add a state with (next state, next token)? c) Do we add a state with (next state, same token)? d) Do we add a state with (same state, next token)? We'll code the actions as boolean strings, so 0000 means no to all 4, 1000 means match but no states added, etc. 1: Yes, final: 1000 Yes, non-final: 0100 No, final: 0000 No, non-final 0000 0+: Yes, final: 1001 Yes, non-final: 0011 No, final: 1000 (note: Don't include last token!) No, non-final: 0010 ?: Yes, final: 1000 Yes, non-final: 0100 No, final: 1000 (note: Don't include last token!) No, non-final: 0010 Possible combinations: 1000, 0100, 0000, 1001, 0110, 0011, 0010, We'll name the bits "match", "advance", "retry", "extend" REJECT = 0000 MATCH = 1000 ADVANCE = 0100 RETRY = 0010 MATCH_EXTEND = 1001 RETRY_ADVANCE = 0110 RETRY_EXTEND = 0011 MATCH_REJECT = 2000 # Match, but don't include last token MATCH_DOUBLE = 3000 # Match both with and without last token Problem: If a quantifier is matching, we're adding a lot of open partials """ cdef int8_t is_match is_match = get_is_match(state, token, extra_attrs, predicate_matches) quantifier = get_quantifier(state) is_final = get_is_final(state) if quantifier == ZERO: is_match = not is_match quantifier = ONE if quantifier == ONE: if is_match and is_final: # Yes, final: 1000 return MATCH elif is_match and not is_final: # Yes, non-final: 0100 return ADVANCE elif not is_match and is_final: # No, final: 0000 return REJECT else: return REJECT elif quantifier == ZERO_PLUS: if is_match and is_final: # Yes, final: 1001 return MATCH_EXTEND elif is_match and not is_final: # Yes, non-final: 0011 return RETRY_EXTEND elif not is_match and is_final: # No, final 2000 (note: Don't include last token!) return MATCH_REJECT else: # No, non-final 0010 return RETRY elif quantifier == ZERO_ONE: if is_match and is_final: # Yes, final: 3000 # To cater for a pattern ending in "?", we need to add # a match both with and without the last token return MATCH_DOUBLE elif is_match and not is_final: # Yes, non-final: 0110 # We need both branches here, consider a pair like: # pattern: .?b string: b # If we 'ADVANCE' on the .?, we miss the match. return RETRY_ADVANCE elif not is_match and is_final: # No, final 2000 (note: Don't include last token!) return MATCH_REJECT else: # No, non-final 0010 return RETRY cdef int8_t get_is_match(PatternStateC state, const TokenC* token, const attr_t* extra_attrs, const int8_t* predicate_matches) nogil: for i in range(state.pattern.nr_py): if predicate_matches[state.pattern.py_predicates[i]] == -1: return 0 spec = state.pattern if spec.nr_attr > 0: for attr in spec.attrs[:spec.nr_attr]: if get_token_attr_for_matcher(token, attr.attr) != attr.value: return 0 for i in range(spec.nr_extra_attr): if spec.extra_attrs[i].value != extra_attrs[spec.extra_attrs[i].index]: return 0 return True cdef inline int8_t get_is_final(PatternStateC state) nogil: if state.pattern[1].quantifier == FINAL_ID: return 1 else: return 0 cdef inline int8_t get_quantifier(PatternStateC state) nogil: return state.pattern.quantifier cdef TokenPatternC* init_pattern(Pool mem, attr_t entity_id, object token_specs) except NULL: pattern = mem.alloc(len(token_specs) + 1, sizeof(TokenPatternC)) cdef int i, index for i, (quantifier, spec, extensions, predicates, token_idx) in enumerate(token_specs): pattern[i].quantifier = quantifier # Ensure attrs refers to a null pointer if nr_attr == 0 if len(spec) > 0: pattern[i].attrs = mem.alloc(len(spec), sizeof(AttrValueC)) pattern[i].nr_attr = len(spec) for j, (attr, value) in enumerate(spec): pattern[i].attrs[j].attr = attr pattern[i].attrs[j].value = value if len(extensions) > 0: pattern[i].extra_attrs = mem.alloc(len(extensions), sizeof(IndexValueC)) for j, (index, value) in enumerate(extensions): pattern[i].extra_attrs[j].index = index pattern[i].extra_attrs[j].value = value pattern[i].nr_extra_attr = len(extensions) if len(predicates) > 0: pattern[i].py_predicates = mem.alloc(len(predicates), sizeof(int32_t)) for j, index in enumerate(predicates): pattern[i].py_predicates[j] = index pattern[i].nr_py = len(predicates) pattern[i].key = hash64(pattern[i].attrs, pattern[i].nr_attr * sizeof(AttrValueC), 0) pattern[i].token_idx = token_idx i = len(token_specs) # Use quantifier to identify final ID pattern node (rather than previous # uninitialized quantifier == 0/ZERO + nr_attr == 0 + non-zero-length attrs) pattern[i].quantifier = FINAL_ID pattern[i].attrs = mem.alloc(1, sizeof(AttrValueC)) pattern[i].attrs[0].attr = ID pattern[i].attrs[0].value = entity_id pattern[i].nr_attr = 1 pattern[i].nr_extra_attr = 0 pattern[i].nr_py = 0 pattern[i].token_idx = -1 return pattern cdef attr_t get_ent_id(const TokenPatternC* pattern) nogil: while pattern.quantifier != FINAL_ID: pattern += 1 id_attr = pattern[0].attrs[0] if id_attr.attr != ID: with gil: raise ValueError(Errors.E074.format(attr=ID, bad_attr=id_attr.attr)) return id_attr.value def _preprocess_pattern(token_specs, vocab, extensions_table, extra_predicates, fuzzy_compare): """This function interprets the pattern, converting the various bits of syntactic sugar before we compile it into a struct with init_pattern. We need to split the pattern up into four parts: * Normal attribute/value pairs, which are stored on either the token or lexeme, can be handled directly. * Extension attributes are handled specially, as we need to prefetch the values from Python for the doc before we begin matching. * Extra predicates also call Python functions, so we have to create the functions and store them. So we store these specially as well. * Extension attributes that have extra predicates are stored within the extra_predicates. * Token index that this pattern belongs to. """ tokens = [] string_store = vocab.strings for token_idx, spec in enumerate(token_specs): if not spec: # Signifier for 'any token' tokens.append((ONE, [(NULL_ATTR, 0)], [], [], token_idx)) continue if not isinstance(spec, dict): raise ValueError(Errors.E154.format()) ops = _get_operators(spec) attr_values = _get_attr_values(spec, string_store) extensions = _get_extensions(spec, string_store, extensions_table) predicates = _get_extra_predicates(spec, extra_predicates, vocab, fuzzy_compare) for op in ops: tokens.append((op, list(attr_values), list(extensions), list(predicates), token_idx)) return tokens def _get_attr_values(spec, string_store): attr_values = [] for attr, value in spec.items(): input_attr = attr if isinstance(attr, str): attr = attr.upper() if attr == '_': continue elif attr == "OP": continue if attr == "TEXT": attr = "ORTH" if attr == "IS_SENT_START": attr = "SENT_START" attr = IDS.get(attr) if isinstance(value, str): if attr == ENT_IOB and value in Token.iob_strings(): value = Token.iob_strings().index(value) else: value = string_store.add(value) elif isinstance(value, bool): value = int(value) elif isinstance(value, int): pass elif isinstance(value, dict): continue else: raise ValueError(Errors.E153.format(vtype=type(value).__name__)) if attr is not None: attr_values.append((attr, value)) else: # should be caught in validation raise ValueError(Errors.E152.format(attr=input_attr)) return attr_values # These predicate helper classes are used to match the REGEX, IN, >= etc # extensions to the matcher introduced in #3173. class _FuzzyPredicate: operators = ("FUZZY", "FUZZY1", "FUZZY2", "FUZZY3", "FUZZY4", "FUZZY5", "FUZZY6", "FUZZY7", "FUZZY8", "FUZZY9") def __init__(self, i, attr, value, predicate, is_extension=False, vocab=None, regex=False, fuzzy=None, fuzzy_compare=None): self.i = i self.attr = attr self.value = value self.predicate = predicate self.is_extension = is_extension if self.predicate not in self.operators: raise ValueError(Errors.E126.format(good=self.operators, bad=self.predicate)) fuzz = self.predicate[len("FUZZY"):] # number after prefix self.fuzzy = int(fuzz) if fuzz else -1 self.fuzzy_compare = fuzzy_compare self.key = (self.attr, self.fuzzy, self.predicate, srsly.json_dumps(value, sort_keys=True)) def __call__(self, Token token): if self.is_extension: value = token._.get(self.attr) else: value = token.vocab.strings[get_token_attr_for_matcher(token.c, self.attr)] if self.value == value: return True return self.fuzzy_compare(value, self.value, self.fuzzy) class _RegexPredicate: operators = ("REGEX",) def __init__(self, i, attr, value, predicate, is_extension=False, vocab=None, regex=False, fuzzy=None, fuzzy_compare=None): self.i = i self.attr = attr self.value = re.compile(value) self.predicate = predicate self.is_extension = is_extension self.key = (self.attr, self.predicate, srsly.json_dumps(value, sort_keys=True)) if self.predicate not in self.operators: raise ValueError(Errors.E126.format(good=self.operators, bad=self.predicate)) def __call__(self, Token token): if self.is_extension: value = token._.get(self.attr) else: value = token.vocab.strings[get_token_attr_for_matcher(token.c, self.attr)] return bool(self.value.search(value)) class _SetPredicate: operators = ("IN", "NOT_IN", "IS_SUBSET", "IS_SUPERSET", "INTERSECTS") def __init__(self, i, attr, value, predicate, is_extension=False, vocab=None, regex=False, fuzzy=None, fuzzy_compare=None): self.i = i self.attr = attr self.vocab = vocab self.regex = regex self.fuzzy = fuzzy self.fuzzy_compare = fuzzy_compare if self.attr == MORPH: # normalize morph strings self.value = set(self.vocab.morphology.add(v) for v in value) else: if self.regex: self.value = set(re.compile(v) for v in value) elif self.fuzzy is not None: # add to string store self.value = set(self.vocab.strings.add(v) for v in value) else: self.value = set(get_string_id(v) for v in value) self.predicate = predicate self.is_extension = is_extension self.key = (self.attr, self.regex, self.fuzzy, self.predicate, srsly.json_dumps(value, sort_keys=True)) if self.predicate not in self.operators: raise ValueError(Errors.E126.format(good=self.operators, bad=self.predicate)) def __call__(self, Token token): if self.is_extension: value = token._.get(self.attr) else: value = get_token_attr_for_matcher(token.c, self.attr) if self.predicate in ("IN", "NOT_IN"): if isinstance(value, (str, int)): value = get_string_id(value) else: return False elif self.predicate in ("IS_SUBSET", "IS_SUPERSET", "INTERSECTS"): # ensure that all values are enclosed in a set if self.attr == MORPH: # break up MORPH into individual Feat=Val values value = set(get_string_id(v) for v in MorphAnalysis.from_id(self.vocab, value)) elif isinstance(value, (str, int)): value = set((get_string_id(value),)) elif isinstance(value, Iterable) and all(isinstance(v, (str, int)) for v in value): value = set(get_string_id(v) for v in value) else: return False if self.predicate == "IN": if self.regex: value = self.vocab.strings[value] return any(bool(v.search(value)) for v in self.value) elif self.fuzzy is not None: value = self.vocab.strings[value] return any(self.fuzzy_compare(value, self.vocab.strings[v], self.fuzzy) for v in self.value) elif value in self.value: return True else: return False elif self.predicate == "NOT_IN": if self.regex: value = self.vocab.strings[value] return not any(bool(v.search(value)) for v in self.value) elif self.fuzzy is not None: value = self.vocab.strings[value] return not any(self.fuzzy_compare(value, self.vocab.strings[v], self.fuzzy) for v in self.value) elif value in self.value: return False else: return True elif self.predicate == "IS_SUBSET": return value <= self.value elif self.predicate == "IS_SUPERSET": return value >= self.value elif self.predicate == "INTERSECTS": return bool(value & self.value) def __repr__(self): return repr(("SetPredicate", self.i, self.attr, self.value, self.predicate)) class _ComparisonPredicate: operators = ("==", "!=", ">=", "<=", ">", "<") def __init__(self, i, attr, value, predicate, is_extension=False, vocab=None, regex=False, fuzzy=None, fuzzy_compare=None): self.i = i self.attr = attr self.value = value self.predicate = predicate self.is_extension = is_extension self.key = (self.attr, self.predicate, srsly.json_dumps(value, sort_keys=True)) if self.predicate not in self.operators: raise ValueError(Errors.E126.format(good=self.operators, bad=self.predicate)) def __call__(self, Token token): if self.is_extension: value = token._.get(self.attr) else: value = get_token_attr_for_matcher(token.c, self.attr) if self.predicate == "==": return value == self.value if self.predicate == "!=": return value != self.value elif self.predicate == ">=": return value >= self.value elif self.predicate == "<=": return value <= self.value elif self.predicate == ">": return value > self.value elif self.predicate == "<": return value < self.value def _get_extra_predicates(spec, extra_predicates, vocab, fuzzy_compare): predicate_types = { "REGEX": _RegexPredicate, "IN": _SetPredicate, "NOT_IN": _SetPredicate, "IS_SUBSET": _SetPredicate, "IS_SUPERSET": _SetPredicate, "INTERSECTS": _SetPredicate, "==": _ComparisonPredicate, "!=": _ComparisonPredicate, ">=": _ComparisonPredicate, "<=": _ComparisonPredicate, ">": _ComparisonPredicate, "<": _ComparisonPredicate, "FUZZY": _FuzzyPredicate, "FUZZY1": _FuzzyPredicate, "FUZZY2": _FuzzyPredicate, "FUZZY3": _FuzzyPredicate, "FUZZY4": _FuzzyPredicate, "FUZZY5": _FuzzyPredicate, "FUZZY6": _FuzzyPredicate, "FUZZY7": _FuzzyPredicate, "FUZZY8": _FuzzyPredicate, "FUZZY9": _FuzzyPredicate, } seen_predicates = {pred.key: pred.i for pred in extra_predicates} output = [] for attr, value in spec.items(): if isinstance(attr, str): if attr == "_": output.extend( _get_extension_extra_predicates( value, extra_predicates, predicate_types, seen_predicates)) continue elif attr.upper() == "OP": continue if attr.upper() == "TEXT": attr = "ORTH" attr = IDS.get(attr.upper()) if isinstance(value, dict): output.extend(_get_extra_predicates_dict(attr, value, vocab, predicate_types, extra_predicates, seen_predicates, fuzzy_compare=fuzzy_compare)) return output def _get_extra_predicates_dict(attr, value_dict, vocab, predicate_types, extra_predicates, seen_predicates, regex=False, fuzzy=None, fuzzy_compare=None): output = [] for type_, value in value_dict.items(): type_ = type_.upper() cls = predicate_types.get(type_) if cls is None: warnings.warn(Warnings.W035.format(pattern=value_dict)) # ignore unrecognized predicate type continue elif cls == _RegexPredicate: if isinstance(value, dict): # add predicates inside regex operator output.extend(_get_extra_predicates_dict(attr, value, vocab, predicate_types, extra_predicates, seen_predicates, regex=True)) continue elif cls == _FuzzyPredicate: if isinstance(value, dict): # add predicates inside fuzzy operator fuzz = type_[len("FUZZY"):] # number after prefix fuzzy_val = int(fuzz) if fuzz else -1 output.extend(_get_extra_predicates_dict(attr, value, vocab, predicate_types, extra_predicates, seen_predicates, fuzzy=fuzzy_val, fuzzy_compare=fuzzy_compare)) continue predicate = cls(len(extra_predicates), attr, value, type_, vocab=vocab, regex=regex, fuzzy=fuzzy, fuzzy_compare=fuzzy_compare) # Don't create redundant predicates. # This helps with efficiency, as we're caching the results. if predicate.key in seen_predicates: output.append(seen_predicates[predicate.key]) else: extra_predicates.append(predicate) output.append(predicate.i) seen_predicates[predicate.key] = predicate.i return output def _get_extension_extra_predicates(spec, extra_predicates, predicate_types, seen_predicates): output = [] for attr, value in spec.items(): if isinstance(value, dict): for type_, cls in predicate_types.items(): if type_ in value: key = (attr, type_, srsly.json_dumps(value[type_], sort_keys=True)) if key in seen_predicates: output.append(seen_predicates[key]) else: predicate = cls(len(extra_predicates), attr, value[type_], type_, is_extension=True) extra_predicates.append(predicate) output.append(predicate.i) seen_predicates[key] = predicate.i return output def _get_operators(spec): # Support 'syntactic sugar' operator '+', as combination of ONE, ZERO_PLUS lookup = {"*": (ZERO_PLUS,), "+": (ONE, ZERO_PLUS), "?": (ZERO_ONE,), "1": (ONE,), "!": (ZERO,)} # Fix casing spec = {key.upper(): values for key, values in spec.items() if isinstance(key, str)} if "OP" not in spec: return (ONE,) elif spec["OP"] in lookup: return lookup[spec["OP"]] #Min_max {n,m} elif spec["OP"].startswith("{") and spec["OP"].endswith("}"): # {n} --> {n,n} exactly n ONE,(n) # {n,m}--> {n,m} min of n, max of m ONE,(n),ZERO_ONE,(m) # {,m} --> {0,m} min of zero, max of m ZERO_ONE,(m) # {n,} --> {n,∞} min of n, max of inf ONE,(n),ZERO_PLUS min_max = spec["OP"][1:-1] min_max = min_max if "," in min_max else f"{min_max},{min_max}" n, m = min_max.split(",") #1. Either n or m is a blank string and the other is numeric -->isdigit #2. Both are numeric and n <= m if (not n.isdecimal() and not m.isdecimal()) or (n.isdecimal() and m.isdecimal() and int(n) > int(m)): keys = ", ".join(lookup.keys()) + ", {n}, {n,m}, {n,}, {,m} where n and m are integers and n <= m " raise ValueError(Errors.E011.format(op=spec["OP"], opts=keys)) # if n is empty string, zero would be used head = tuple(ONE for __ in range(int(n or 0))) tail = tuple(ZERO_ONE for __ in range(int(m) - int(n or 0))) if m else (ZERO_PLUS,) return head + tail else: keys = ", ".join(lookup.keys()) + ", {n}, {n,m}, {n,}, {,m} where n and m are integers and n <= m " raise ValueError(Errors.E011.format(op=spec["OP"], opts=keys)) def _get_extensions(spec, string_store, name2index): attr_values = [] if not isinstance(spec.get("_", {}), dict): raise ValueError(Errors.E154.format()) for name, value in spec.get("_", {}).items(): if isinstance(value, dict): # Handle predicates (e.g. "IN", in the extra_predicates, not here. continue if isinstance(value, str): value = string_store.add(value) if name not in name2index: name2index[name] = len(name2index) attr_values.append((name2index[name], value)) return attr_values