# coding: utf8 from __future__ import absolute_import, unicode_literals from contextlib import contextmanager import dill import numpy from thinc.neural import Model from thinc.neural.ops import NumpyOps, CupyOps from .tokenizer import Tokenizer from .vocab import Vocab from .tagger import Tagger from .lemmatizer import Lemmatizer from .train import Trainer from .syntax.parser import get_templates from .syntax.nonproj import PseudoProjectivity from .pipeline import NeuralDependencyParser, EntityRecognizer from .pipeline import TokenVectorEncoder, NeuralTagger, NeuralEntityRecognizer from .compat import json_dumps from .attrs import IS_STOP from .lang.punctuation import TOKENIZER_PREFIXES, TOKENIZER_SUFFIXES, TOKENIZER_INFIXES from .lang.tokenizer_exceptions import TOKEN_MATCH from .lang.tag_map import TAG_MAP from .lang.lex_attrs import LEX_ATTRS from . import util class BaseDefaults(object): @classmethod def create_lemmatizer(cls, nlp=None): return Lemmatizer(cls.lemma_index, cls.lemma_exc, cls.lemma_rules) @classmethod def create_vocab(cls, nlp=None): lemmatizer = cls.create_lemmatizer(nlp) lex_attr_getters = dict(cls.lex_attr_getters) # This is messy, but it's the minimal working fix to Issue #639. lex_attr_getters[IS_STOP] = lambda string: string.lower() in cls.stop_words vocab = Vocab(lex_attr_getters=lex_attr_getters, tag_map=cls.tag_map, lemmatizer=lemmatizer) for tag_str, exc in cls.morph_rules.items(): for orth_str, attrs in exc.items(): vocab.morphology.add_special_case(tag_str, orth_str, attrs) return vocab @classmethod def create_tokenizer(cls, nlp=None): rules = cls.tokenizer_exceptions token_match = cls.token_match prefix_search = util.compile_prefix_regex(cls.prefixes).search \ if cls.prefixes else None suffix_search = util.compile_suffix_regex(cls.suffixes).search \ if cls.suffixes else None infix_finditer = util.compile_infix_regex(cls.infixes).finditer \ if cls.infixes else None vocab = nlp.vocab if nlp is not None else cls.create_vocab(nlp) return Tokenizer(vocab, rules=rules, prefix_search=prefix_search, suffix_search=suffix_search, infix_finditer=infix_finditer, token_match=token_match) @classmethod def create_tagger(cls, nlp=None, **cfg): if nlp is None: return NeuralTagger(cls.create_vocab(nlp), **cfg) else: return NeuralTagger(nlp.vocab, **cfg) @classmethod def create_parser(cls, nlp=None, **cfg): if nlp is None: return NeuralDependencyParser(cls.create_vocab(nlp), **cfg) else: return NeuralDependencyParser(nlp.vocab, **cfg) @classmethod def create_entity(cls, nlp=None, **cfg): if nlp is None: return NeuralEntityRecognizer(cls.create_vocab(nlp), **cfg) else: return NeuralEntityRecognizer(nlp.vocab, **cfg) @classmethod def create_pipeline(cls, nlp=None): meta = nlp.meta if nlp is not None else {} # Resolve strings, like "cnn", "lstm", etc pipeline = [] for entry in cls.pipeline: factory = cls.Defaults.factories[entry] pipeline.append(factory(nlp, **meta.get(entry, {}))) return pipeline factories = { 'make_doc': create_tokenizer, 'token_vectors': lambda nlp, **cfg: TokenVectorEncoder(nlp.vocab, **cfg), 'tags': lambda nlp, **cfg: NeuralTagger(nlp.vocab, **cfg), 'dependencies': lambda nlp, **cfg: NeuralDependencyParser(nlp.vocab, **cfg), 'entities': lambda nlp, **cfg: NeuralEntityRecognizer(nlp.vocab, **cfg), } token_match = TOKEN_MATCH prefixes = tuple(TOKENIZER_PREFIXES) suffixes = tuple(TOKENIZER_SUFFIXES) infixes = tuple(TOKENIZER_INFIXES) tag_map = dict(TAG_MAP) tokenizer_exceptions = {} parser_features = get_templates('parser') entity_features = get_templates('ner') tagger_features = Tagger.feature_templates # TODO -- fix this stop_words = set() lemma_rules = {} lemma_exc = {} lemma_index = {} morph_rules = {} lex_attr_getters = LEX_ATTRS class Language(object): """ A text-processing pipeline. Usually you'll load this once per process, and pass the instance around your program. """ Defaults = BaseDefaults lang = None def __init__(self, vocab=True, make_doc=True, pipeline=None, meta={}): self.meta = dict(meta) if vocab is True: factory = self.Defaults.create_vocab vocab = factory(self, **meta.get('vocab', {})) self.vocab = vocab if make_doc is True: factory = self.Defaults.create_tokenizer make_doc = factory(self, **meta.get('tokenizer', {})) self.make_doc = make_doc if pipeline is True: self.pipeline = self.Defaults.create_pipeline(self) elif pipeline: self.pipeline = list(pipeline) # Resolve strings, like "cnn", "lstm", etc for i, entry in enumerate(self.pipeline): if entry in self.Defaults.factories: factory = self.Defaults.factories[entry] self.pipeline[i] = factory(self, **meta.get(entry, {})) else: self.pipeline = [] def __call__(self, text, state=None, **disabled): """ Apply the pipeline to some text. The text can span multiple sentences, and can contain arbtrary whitespace. Alignment into the original string is preserved. Args: text (unicode): The text to be processed. state: Arbitrary Returns: doc (Doc): A container for accessing the annotations. Example: >>> from spacy.en import English >>> nlp = English() >>> tokens = nlp('An example sentence. Another example sentence.') >>> tokens[0].orth_, tokens[0].head.tag_ ('An', 'NN') """ doc = self.make_doc(text) for proc in self.pipeline: name = getattr(proc, 'name', None) if name in disabled and not disabled[name]: continue state = proc(doc, state=state) return doc def update(self, docs, golds, state=None, drop=0., sgd=None): grads = {} def get_grads(W, dW, key=None): grads[key] = (W, dW) state = {} if state is None else state for process in self.pipeline: if hasattr(process, 'update'): state = process.update(docs, golds, state=state, drop=drop, sgd=get_grads) else: process(docs, state=state) if sgd is not None: for key, (W, dW) in grads.items(): # TODO: Unhack this when thinc improves if isinstance(W, numpy.ndarray): sgd.ops = NumpyOps() else: sgd.ops = CupyOps() sgd(W, dW, key=key) return state @contextmanager def begin_training(self, gold_tuples, **cfg): # Populate vocab for _, annots_brackets in gold_tuples: for annots, _ in annots_brackets: for word in annots[1]: _ = self.vocab[word] # Handle crossing dependencies gold_tuples = PseudoProjectivity.preprocess_training_data(gold_tuples) contexts = [] if cfg.get('use_gpu'): Model.ops = CupyOps() Model.Ops = CupyOps print("Use GPU") for proc in self.pipeline: if hasattr(proc, 'begin_training'): context = proc.begin_training(gold_tuples, pipeline=self.pipeline) contexts.append(context) trainer = Trainer(self, gold_tuples, **cfg) yield trainer, trainer.optimizer @contextmanager def use_params(self, params, **cfg): contexts = [pipe.model.use_params(params) for pipe in self.pipeline if hasattr(pipe, 'model') and hasattr(pipe.model, 'use_params')] yield for context in contexts: try: next(context.gen) except StopIteration: pass def pipe(self, texts, n_threads=2, batch_size=1000, **disabled): """ Process texts as a stream, and yield Doc objects in order. Supports GIL-free multi-threading. Arguments: texts (iterator) tag (bool) parse (bool) entity (bool) """ stream = ((self.make_doc(text), None) for text in texts) for proc in self.pipeline: name = getattr(proc, 'name', None) if name in disabled and not disabled[name]: continue if hasattr(proc, 'pipe'): stream = proc.pipe(stream, n_threads=n_threads, batch_size=batch_size) else: stream = (proc(doc, state) for doc, state in stream) for doc, state in stream: yield doc def to_disk(self, path, **exclude): """Save the current state to a directory. Args: path: A path to a directory, which will be created if it doesn't exist. Paths may be either strings or pathlib.Path-like objects. **exclude: Prevent named attributes from being saved. """ path = util.ensure_path(path) if not path.exists(): path.mkdir() if not path.is_dir(): raise IOError("Output path must be a directory") props = {} for name, value in self.__dict__.items(): if name in exclude: continue if hasattr(value, 'to_disk'): value.to_disk(path / name) else: props[name] = value with (path / 'props.pickle').open('wb') as file_: dill.dump(props, file_) def from_disk(self, path, **exclude): """Load the current state from a directory. Args: path: A path to a directory. Paths may be either strings or pathlib.Path-like objects. **exclude: Prevent named attributes from being saved. """ path = util.ensure_path(path) for name in path.iterdir(): if name not in exclude and hasattr(self, str(name)): getattr(self, name).from_disk(path / name) with (path / 'props.pickle').open('rb') as file_: bytes_data = file_.read() self.from_bytes(bytes_data, **exclude) return self def to_bytes(self, **exclude): """Serialize the current state to a binary string. Args: path: A path to a directory. Paths may be either strings or pathlib.Path-like objects. **exclude: Prevent named attributes from being serialized. """ props = dict(self.__dict__) for key in exclude: if key in props: props.pop(key) return dill.dumps(props, -1) def from_bytes(self, bytes_data, **exclude): """Load state from a binary string. Args: bytes_data (bytes): The data to load from. **exclude: Prevent named attributes from being loaded. """ props = dill.loads(bytes_data) for key, value in props.items(): if key not in exclude: setattr(self, key, value) return self