""" MALT-style dependency parser """ # coding: utf-8 # cython: infer_types=True from __future__ import unicode_literals from collections import Counter import ujson cimport cython cimport cython.parallel import numpy.random from cpython.ref cimport PyObject, Py_INCREF, Py_XDECREF from cpython.exc cimport PyErr_CheckSignals from libc.stdint cimport uint32_t, uint64_t from libc.string cimport memset, memcpy from libc.stdlib cimport malloc, calloc, free from thinc.typedefs cimport weight_t, class_t, feat_t, atom_t, hash_t from thinc.linear.avgtron cimport AveragedPerceptron from thinc.linalg cimport VecVec from thinc.structs cimport SparseArrayC, FeatureC, ExampleC from thinc.extra.eg cimport Example from cymem.cymem cimport Pool, Address from murmurhash.mrmr cimport hash64 from preshed.maps cimport MapStruct from preshed.maps cimport map_get from . import _parse_features from ._parse_features cimport CONTEXT_SIZE from ._parse_features cimport fill_context from .stateclass cimport StateClass from ._state cimport StateC from .nonproj import PseudoProjectivity from .transition_system import OracleError from .transition_system cimport TransitionSystem, Transition from ..structs cimport TokenC from ..tokens.doc cimport Doc from ..strings cimport StringStore from ..gold cimport GoldParse USE_FTRL = True DEBUG = False def set_debug(val): global DEBUG DEBUG = val @layerize def get_context_tokens(states, drop=0.): for state in states: context[i, 0] = state.B(0) context[i, 1] = state.S(0) context[i, 2] = state.S(1) context[i, 3] = state.L(state.S(0), 1) context[i, 4] = state.L(state.S(0), 2) context[i, 5] = state.R(state.S(0), 1) context[i, 6] = state.R(state.S(0), 2) return (context, states), None def extract_features(attrs): def forward(contexts_states, drop=0.): contexts, states = contexts_states for i, state in enumerate(states): for j, tok_i in enumerate(contexts[i]): token = state.get_token(tok_i) for k, attr in enumerate(attrs): output[i, j, k] = getattr(token, attr) return output, None return layerize(forward) def build_tok2vec(lang, width, depth, embed_size): cols = [LEX_ID, PREFIX, SUFFIX, SHAPE] static = StaticVectors('en', width, column=cols.index(LEX_ID)) prefix = HashEmbed(width, embed_size, column=cols.index(PREFIX)) suffix = HashEmbed(width, embed_size, column=cols.index(SUFFIX)) shape = HashEmbed(width, embed_size, column=cols.index(SHAPE)) with Model.overload_operaters('>>': chain, '|': concatenate, '+': add): tok2vec = ( extract_features(cols) >> (static | prefix | suffix | shape) >> (ExtractWindow(nW=1) >> Maxout(width)) ** depth ) return tok2vec def build_parse2vec(width, embed_size): cols = [TAG, DEP] tag_vector = HashEmbed(width, 1000, column=cols.index(TAG)) dep_vector = HashEmbed(width, 1000, column=cols.index(DEP)) with Model.overload_operaters('>>': chain): model = ( extract_features([TAG, DEP]) >> (tag_vector | dep_vector) ) return model def build_model(get_contexts, tok2vec, parse2vec, width, depth, nr_class): with Model.overload_operaters('>>': chain): model = ( get_contexts >> (tok2vec | parse2vec) >> Maxout(width) ** depth >> Softmax(nr_class) ) return model cdef class Parser: """ Base class of the DependencyParser and EntityRecognizer. """ @classmethod def load(cls, path, Vocab vocab, TransitionSystem=None, require=False, **cfg): """ Load the statistical model from the supplied path. Arguments: path (Path): The path to load from. vocab (Vocab): The vocabulary. Must be shared by the documents to be processed. require (bool): Whether to raise an error if the files are not found. Returns (Parser): The newly constructed object. """ with (path / 'config.json').open() as file_: cfg = ujson.load(file_) self = cls(vocab, TransitionSystem=TransitionSystem, model=None, **cfg) if (path / 'model').exists(): self.model.load(str(path / 'model')) elif require: raise IOError( "Required file %s/model not found when loading" % str(path)) return self def __init__(self, Vocab vocab, TransitionSystem=None, model=None, **cfg): """ Create a Parser. Arguments: vocab (Vocab): The vocabulary object. Must be shared with documents to be processed. model (thinc Model): The statistical model. Returns (Parser): The newly constructed object. """ if TransitionSystem is None: TransitionSystem = self.TransitionSystem self.vocab = vocab cfg['actions'] = TransitionSystem.get_actions(**cfg) self.moves = TransitionSystem(vocab.strings, cfg['actions']) if model is None: model = self.build_model(**cfg) self.model = model self.cfg = cfg def __reduce__(self): return (Parser, (self.vocab, self.moves, self.model), None, None) def __call__(self, Doc tokens): """ Apply the parser or entity recognizer, setting the annotations onto the Doc object. Arguments: doc (Doc): The document to be processed. Returns: None """ self.parse_batch([tokens]) self.moves.finalize_doc(tokens) def parse_batch(self, docs): states = self._init_states(docs) todo = list(states) nr_class = self.moves.n_moves while todo: scores = self.model.predict(todo) self._validate_batch(is_valid, scores, states) for state, guess in zip(todo, scores.argmax(axis=1)): action = self.moves.c[guess] action.do(state, action.label) todo = [state for state in todo if not state.is_final()] for state, doc in zip(states, docs): self.moves.finalize_state(state, doc) def pipe(self, stream, int batch_size=1000, int n_threads=2): """ Process a stream of documents. Arguments: stream: The sequence of documents to process. batch_size (int): The number of documents to accumulate into a working set. n_threads (int): The number of threads with which to work on the buffer in parallel. Yields (Doc): Documents, in order. """ cdef Pool mem = Pool() cdef int* lengths = mem.alloc(batch_size, sizeof(int)) cdef Doc doc cdef int i cdef int nr_feat = self.model.nr_feat cdef int status queue = [] for doc in stream: doc_ptr[len(queue)] = doc.c lengths[len(queue)] = doc.length queue.append(doc) if len(queue) == batch_size: self.parse_batch(queue) for doc in queue: self.moves.finalize_doc(doc) yield doc queue = [] if queue: self.parse_batch(queue) for doc in queue: self.moves.finalize_doc(doc) yield doc def update(self, docs, golds, drop=0., sgd=None): if isinstance(docs, Doc) and isinstance(golds, GoldParse): return self.update([docs], [golds], drop=drop) states = self._init_states(docs) nr_class = self.moves.n_moves while states: scores, finish_update = self.model.begin_update(states, drop=drop) self._validate_batch(is_valid, scores, states) for i, state in enumerate(states): self.moves.set_costs(costs[i], is_valid, state, golds[i]) self._transition_batch(states, scores) self._set_gradient(gradients, scores, costs) finish_update(gradients, sgd=sgd) gradients.fill(0) states = [state for state in states if not state.is_final()] gradients = gradients[:len(states)] costs = costs[:len(states)] return 0 def _validate_batch(self, is_valid, scores, states): for i, state in enumerate(states): self.moves.set_valid(is_valid, state) for j in range(self.moves.n_moves): if not is_valid[j]: scores[i, j] = 0 def _transition_batch(self, states, scores): for state, guess in zip(states, scores.argmax(axis=1)): action = self.moves.c[guess] action.do(state, action.label) def _init_states(self, docs): states = [] cdef Doc doc for i, doc in enumerate(docs): state = StateClass.init(doc) self.moves.initialize_state(state) return states def _set_gradient(self, gradients, scores, costs): """Do multi-label log loss""" cdef double Z, gZ, max_, g_max maxes = scores.max(axis=1) g_maxes = (scores * costs <= 0).max(axis=1) exps = (scores-maxes).exp() g_exps = (g_scores-g_maxes).exp() Zs = exps.sum(axis=1) gZs = g_exps.sum(axis=1) logprob = exps / Zs g_logprob = g_exps / gZs gradients[:] = logprob - g_logprob def step_through(self, Doc doc, GoldParse gold=None): """ Set up a stepwise state, to introspect and control the transition sequence. Arguments: doc (Doc): The document to step through. gold (GoldParse): Optional gold parse Returns (StepwiseState): A state object, to step through the annotation process. """ return StepwiseState(self, doc, gold=gold) def from_transition_sequence(self, Doc doc, sequence): """Control the annotations on a document by specifying a transition sequence to follow. Arguments: doc (Doc): The document to annotate. sequence: A sequence of action names, as unicode strings. Returns: None """ with self.step_through(doc) as stepwise: for transition in sequence: stepwise.transition(transition) def add_label(self, label): # Doesn't set label into serializer -- subclasses override it to do that. for action in self.moves.action_types: added = self.moves.add_action(action, label) if added: # Important that the labels be stored as a list! We need the # order, or the model goes out of synch self.cfg.setdefault('extra_labels', []).append(label) cdef int dropout(FeatureC* feats, int nr_feat, float prob) except -1: if prob <= 0 or prob >= 1.: return 0 cdef double[::1] py_probs = numpy.random.uniform(0., 1., nr_feat) cdef double* probs = &py_probs[0] for i in range(nr_feat): if probs[i] >= prob: feats[i].value /= prob else: feats[i].value = 0. cdef class StepwiseState: cdef readonly StateClass stcls cdef readonly Example eg cdef readonly Doc doc cdef readonly GoldParse gold cdef readonly Parser parser def __init__(self, Parser parser, Doc doc, GoldParse gold=None): self.parser = parser self.doc = doc if gold is not None: self.gold = gold self.parser.moves.preprocess_gold(self.gold) else: self.gold = GoldParse(doc) self.stcls = StateClass.init(doc.c, doc.length) self.parser.moves.initialize_state(self.stcls.c) self.eg = Example( nr_class=self.parser.moves.n_moves, nr_atom=CONTEXT_SIZE, nr_feat=self.parser.model.nr_feat) def __enter__(self): return self def __exit__(self, type, value, traceback): self.finish() @property def is_final(self): return self.stcls.is_final() @property def stack(self): return self.stcls.stack @property def queue(self): return self.stcls.queue @property def heads(self): return [self.stcls.H(i) for i in range(self.stcls.c.length)] @property def deps(self): return [self.doc.vocab.strings[self.stcls.c._sent[i].dep] for i in range(self.stcls.c.length)] @property def costs(self): """ Find the action-costs for the current state. """ if not self.gold: raise ValueError("Can't set costs: No GoldParse provided") self.parser.moves.set_costs(self.eg.c.is_valid, self.eg.c.costs, self.stcls, self.gold) costs = {} for i in range(self.parser.moves.n_moves): if not self.eg.c.is_valid[i]: continue transition = self.parser.moves.c[i] name = self.parser.moves.move_name(transition.move, transition.label) costs[name] = self.eg.c.costs[i] return costs def predict(self): self.eg.reset() self.eg.c.nr_feat = self.parser.model.set_featuresC(self.eg.c.atoms, self.eg.c.features, self.stcls.c) self.parser.moves.set_valid(self.eg.c.is_valid, self.stcls.c) self.parser.model.set_scoresC(self.eg.c.scores, self.eg.c.features, self.eg.c.nr_feat) cdef Transition action = self.parser.moves.c[self.eg.guess] return self.parser.moves.move_name(action.move, action.label) def transition(self, action_name=None): if action_name is None: action_name = self.predict() moves = {'S': 0, 'D': 1, 'L': 2, 'R': 3} if action_name == '_': action_name = self.predict() action = self.parser.moves.lookup_transition(action_name) elif action_name == 'L' or action_name == 'R': self.predict() move = moves[action_name] clas = _arg_max_clas(self.eg.c.scores, move, self.parser.moves.c, self.eg.c.nr_class) action = self.parser.moves.c[clas] else: action = self.parser.moves.lookup_transition(action_name) action.do(self.stcls.c, action.label) def finish(self): if self.stcls.is_final(): self.parser.moves.finalize_state(self.stcls.c) self.doc.set_parse(self.stcls.c._sent) self.parser.moves.finalize_doc(self.doc) class ParserStateError(ValueError): def __init__(self, doc): ValueError.__init__(self, "Error analysing doc -- no valid actions available. This should " "never happen, so please report the error on the issue tracker. " "Here's the thread to do so --- reopen it if it's closed:\n" "https://github.com/spacy-io/spaCy/issues/429\n" "Please include the text that the parser failed on, which is:\n" "%s" % repr(doc.text)) cdef int arg_max_if_gold(const weight_t* scores, const weight_t* costs, int n) nogil: cdef int best = -1 for i in range(n): if costs[i] <= 0: if best == -1 or scores[i] > scores[best]: best = i return best cdef int _arg_max_clas(const weight_t* scores, int move, const Transition* actions, int nr_class) except -1: cdef weight_t score = 0 cdef int mode = -1 cdef int i for i in range(nr_class): if actions[i].move == move and (mode == -1 or scores[i] >= score): mode = i score = scores[i] return mode