from __future__ import unicode_literals import pytest import spacy import os @pytest.fixture() def token(doc): return doc[0] def test_load_resources_and_process_text(): if os.environ.get('SPACY_DATA'): data_path = os.environ.get('SPACY_DATA') else: data_path = None print("Load EN from %s" % data_path) from spacy.en import English nlp = English(data_dir=data_path) doc = nlp('Hello, world. Here are two sentences.') @pytest.mark.models def test_get_tokens_and_sentences(doc): token = doc[0] sentence = next(doc.sents) assert token is sentence[0] assert sentence.text == 'Hello, world.' @pytest.mark.models def test_use_integer_ids_for_any_strings(nlp, token): hello_id = nlp.vocab.strings['Hello'] hello_str = nlp.vocab.strings[hello_id] assert token.orth == hello_id == 3125 assert token.orth_ == hello_str == 'Hello' def test_get_and_set_string_views_and_flags(nlp, token): assert token.shape_ == 'Xxxxx' for lexeme in nlp.vocab: if lexeme.is_alpha: lexeme.shape_ = 'W' elif lexeme.is_digit: lexeme.shape_ = 'D' elif lexeme.is_punct: lexeme.shape_ = 'P' else: lexeme.shape_ = 'M' assert token.shape_ == 'W' def test_export_to_numpy_arrays(nlp, doc): from spacy.attrs import ORTH, LIKE_URL, IS_OOV attr_ids = [ORTH, LIKE_URL, IS_OOV] doc_array = doc.to_array(attr_ids) assert doc_array.shape == (len(doc), len(attr_ids)) assert doc[0].orth == doc_array[0, 0] assert doc[1].orth == doc_array[1, 0] assert doc[0].like_url == doc_array[0, 1] assert list(doc_array[:, 1]) == [t.like_url for t in doc] @pytest.mark.models def test_word_vectors(nlp): doc = nlp("Apples and oranges are similar. Boots and hippos aren't.") apples = doc[0] oranges = doc[2] boots = doc[6] hippos = doc[8] assert apples.similarity(oranges) > boots.similarity(hippos) @pytest.mark.models def test_part_of_speech_tags(nlp): from spacy.parts_of_speech import ADV def is_adverb(token): return token.pos == spacy.parts_of_speech.ADV # These are data-specific, so no constants are provided. You have to look # up the IDs from the StringStore. NNS = nlp.vocab.strings['NNS'] NNPS = nlp.vocab.strings['NNPS'] def is_plural_noun(token): return token.tag == NNS or token.tag == NNPS def print_coarse_pos(token): print(token.pos_) def print_fine_pos(token): print(token.tag_) @pytest.mark.models def test_syntactic_dependencies(): def dependency_labels_to_root(token): '''Walk up the syntactic tree, collecting the arc labels.''' dep_labels = [] while token.head is not token: dep_labels.append(token.dep) token = token.head return dep_labels @pytest.mark.models def test_named_entities(): def iter_products(docs): for doc in docs: for ent in doc.ents: if ent.label_ == 'PRODUCT': yield ent def word_is_in_entity(word): return word.ent_type != 0 def count_parent_verb_by_person(docs): counts = defaultdict(defaultdict(int)) for doc in docs: for ent in doc.ents: if ent.label_ == 'PERSON' and ent.root.head.pos == VERB: counts[ent.orth_][ent.root.head.lemma_] += 1 return counts def test_calculate_inline_mark_up_on_original_string(): def put_spans_around_tokens(doc, get_classes): '''Given some function to compute class names, put each token in a span element, with the appropriate classes computed. All whitespace is preserved, outside of the spans. (Yes, I know HTML won't display it. But the point is no information is lost, so you can calculate what you need, e.g.
tags,

tags, etc.) ''' output = [] template = '{word}{space}' for token in doc: if token.is_space: output.append(token.orth_) else: output.append( template.format( classes=' '.join(get_classes(token)), word=token.orth_, space=token.whitespace_)) string = ''.join(output) string = string.replace('\n', '') string = string.replace('\t', ' ') return string @pytest.mark.models def test_efficient_binary_serialization(doc): from spacy.tokens.doc import Doc byte_string = doc.to_bytes() open('moby_dick.bin', 'wb').write(byte_string) nlp = spacy.en.English() for byte_string in Doc.read_bytes(open('moby_dick.bin', 'rb')): doc = Doc(nlp.vocab) doc.from_bytes(byte_string)