from __future__ import unicode_literals
import pytest
import spacy
import os
@pytest.fixture()
def token(doc):
return doc[0]
def test_load_resources_and_process_text():
if os.environ.get('SPACY_DATA'):
data_path = os.environ.get('SPACY_DATA')
else:
data_path = None
print("Load EN from %s" % data_path)
from spacy.en import English
nlp = English(data_dir=data_path)
doc = nlp('Hello, world. Here are two sentences.')
@pytest.mark.models
def test_get_tokens_and_sentences(doc):
token = doc[0]
sentence = next(doc.sents)
assert token is sentence[0]
assert sentence.text == 'Hello, world.'
@pytest.mark.models
def test_use_integer_ids_for_any_strings(nlp, token):
hello_id = nlp.vocab.strings['Hello']
hello_str = nlp.vocab.strings[hello_id]
assert token.orth == hello_id == 3125
assert token.orth_ == hello_str == 'Hello'
def test_get_and_set_string_views_and_flags(nlp, token):
assert token.shape_ == 'Xxxxx'
for lexeme in nlp.vocab:
if lexeme.is_alpha:
lexeme.shape_ = 'W'
elif lexeme.is_digit:
lexeme.shape_ = 'D'
elif lexeme.is_punct:
lexeme.shape_ = 'P'
else:
lexeme.shape_ = 'M'
assert token.shape_ == 'W'
def test_export_to_numpy_arrays(nlp, doc):
from spacy.attrs import ORTH, LIKE_URL, IS_OOV
attr_ids = [ORTH, LIKE_URL, IS_OOV]
doc_array = doc.to_array(attr_ids)
assert doc_array.shape == (len(doc), len(attr_ids))
assert doc[0].orth == doc_array[0, 0]
assert doc[1].orth == doc_array[1, 0]
assert doc[0].like_url == doc_array[0, 1]
assert list(doc_array[:, 1]) == [t.like_url for t in doc]
@pytest.mark.models
def test_word_vectors(nlp):
doc = nlp("Apples and oranges are similar. Boots and hippos aren't.")
apples = doc[0]
oranges = doc[2]
boots = doc[6]
hippos = doc[8]
assert apples.similarity(oranges) > boots.similarity(hippos)
@pytest.mark.models
def test_part_of_speech_tags(nlp):
from spacy.parts_of_speech import ADV
def is_adverb(token):
return token.pos == spacy.parts_of_speech.ADV
# These are data-specific, so no constants are provided. You have to look
# up the IDs from the StringStore.
NNS = nlp.vocab.strings['NNS']
NNPS = nlp.vocab.strings['NNPS']
def is_plural_noun(token):
return token.tag == NNS or token.tag == NNPS
def print_coarse_pos(token):
print(token.pos_)
def print_fine_pos(token):
print(token.tag_)
@pytest.mark.models
def test_syntactic_dependencies():
def dependency_labels_to_root(token):
'''Walk up the syntactic tree, collecting the arc labels.'''
dep_labels = []
while token.head is not token:
dep_labels.append(token.dep)
token = token.head
return dep_labels
@pytest.mark.models
def test_named_entities():
def iter_products(docs):
for doc in docs:
for ent in doc.ents:
if ent.label_ == 'PRODUCT':
yield ent
def word_is_in_entity(word):
return word.ent_type != 0
def count_parent_verb_by_person(docs):
counts = defaultdict(defaultdict(int))
for doc in docs:
for ent in doc.ents:
if ent.label_ == 'PERSON' and ent.root.head.pos == VERB:
counts[ent.orth_][ent.root.head.lemma_] += 1
return counts
def test_calculate_inline_mark_up_on_original_string():
def put_spans_around_tokens(doc, get_classes):
'''Given some function to compute class names, put each token in a
span element, with the appropriate classes computed.
All whitespace is preserved, outside of the spans. (Yes, I know HTML
won't display it. But the point is no information is lost, so you can
calculate what you need, e.g.
tags,
tags, etc.) ''' output = [] template = '{word}{space}' for token in doc: if token.is_space: output.append(token.orth_) else: output.append( template.format( classes=' '.join(get_classes(token)), word=token.orth_, space=token.whitespace_)) string = ''.join(output) string = string.replace('\n', '') string = string.replace('\t', ' ') return string @pytest.mark.models def test_efficient_binary_serialization(doc): from spacy.tokens.doc import Doc byte_string = doc.to_bytes() open('moby_dick.bin', 'wb').write(byte_string) nlp = spacy.en.English() for byte_string in Doc.read_bytes(open('moby_dick.bin', 'rb')): doc = Doc(nlp.vocab) doc.from_bytes(byte_string)