from .stop_words import STOP_WORDS from .tag_map import TAG_MAP from ...attrs import LANG from ...language import Language from ...tokens import Doc from ...compat import copy_reg from ...util import DummyTokenizer def try_mecab_import(): try: from natto import MeCab return MeCab except ImportError: raise ImportError( "Korean support requires [mecab-ko](https://bitbucket.org/eunjeon/mecab-ko/src/master/README.md), " "[mecab-ko-dic](https://bitbucket.org/eunjeon/mecab-ko-dic), " "and [natto-py](https://github.com/buruzaemon/natto-py)" ) # fmt: on def check_spaces(text, tokens): prev_end = -1 start = 0 for token in tokens: idx = text.find(token, start) if prev_end > 0: yield prev_end != idx prev_end = idx + len(token) start = prev_end if start > 0: yield False class KoreanTokenizer(DummyTokenizer): def __init__(self, cls, nlp=None): self.vocab = nlp.vocab if nlp is not None else cls.create_vocab(nlp) self.Tokenizer = try_mecab_import() def __call__(self, text): dtokens = list(self.detailed_tokens(text)) surfaces = [dt["surface"] for dt in dtokens] doc = Doc(self.vocab, words=surfaces, spaces=list(check_spaces(text, surfaces))) for token, dtoken in zip(doc, dtokens): first_tag, sep, eomi_tags = dtoken["tag"].partition("+") token.tag_ = first_tag # stem(어간) or pre-final(선어말 어미) token.lemma_ = dtoken["lemma"] doc.user_data["full_tags"] = [dt["tag"] for dt in dtokens] return doc def detailed_tokens(self, text): # 품사 태그(POS)[0], 의미 부류(semantic class)[1], 종성 유무(jongseong)[2], 읽기(reading)[3], # 타입(type)[4], 첫번째 품사(start pos)[5], 마지막 품사(end pos)[6], 표현(expression)[7], * with self.Tokenizer("-F%f[0],%f[7]") as tokenizer: for node in tokenizer.parse(text, as_nodes=True): if node.is_eos(): break surface = node.surface feature = node.feature tag, _, expr = feature.partition(",") lemma, _, remainder = expr.partition("/") if lemma == "*": lemma = surface yield {"surface": surface, "lemma": lemma, "tag": tag} class KoreanDefaults(Language.Defaults): lex_attr_getters = dict(Language.Defaults.lex_attr_getters) lex_attr_getters[LANG] = lambda _text: "ko" stop_words = STOP_WORDS tag_map = TAG_MAP writing_system = {"direction": "ltr", "has_case": False, "has_letters": False} @classmethod def create_tokenizer(cls, nlp=None): return KoreanTokenizer(cls, nlp) class Korean(Language): lang = "ko" Defaults = KoreanDefaults def make_doc(self, text): return self.tokenizer(text) def pickle_korean(instance): return Korean, tuple() copy_reg.pickle(Korean, pickle_korean) __all__ = ["Korean"]