import re import string import hypothesis import hypothesis.strategies import pytest import spacy from spacy.tokenizer import Tokenizer from spacy.util import get_lang_class # Only include languages with no external dependencies # "is" seems to confuse importlib, so we're also excluding it for now # excluded: ja, ru, th, uk, vi, zh, is LANGUAGES = [ pytest.param("fr", marks=pytest.mark.slow()), pytest.param("af", marks=pytest.mark.slow()), pytest.param("ar", marks=pytest.mark.slow()), pytest.param("bg", marks=pytest.mark.slow()), "bn", pytest.param("ca", marks=pytest.mark.slow()), pytest.param("cs", marks=pytest.mark.slow()), pytest.param("da", marks=pytest.mark.slow()), pytest.param("de", marks=pytest.mark.slow()), "el", "en", pytest.param("es", marks=pytest.mark.slow()), pytest.param("et", marks=pytest.mark.slow()), pytest.param("fa", marks=pytest.mark.slow()), pytest.param("fi", marks=pytest.mark.slow()), "fr", pytest.param("ga", marks=pytest.mark.slow()), pytest.param("he", marks=pytest.mark.slow()), pytest.param("hi", marks=pytest.mark.slow()), pytest.param("hr", marks=pytest.mark.slow()), "hu", pytest.param("id", marks=pytest.mark.slow()), pytest.param("it", marks=pytest.mark.slow()), pytest.param("isl", marks=pytest.mark.slow()), pytest.param("kn", marks=pytest.mark.slow()), pytest.param("lb", marks=pytest.mark.slow()), pytest.param("lt", marks=pytest.mark.slow()), pytest.param("lv", marks=pytest.mark.slow()), pytest.param("nb", marks=pytest.mark.slow()), pytest.param("nl", marks=pytest.mark.slow()), "pl", pytest.param("pt", marks=pytest.mark.slow()), pytest.param("ro", marks=pytest.mark.slow()), pytest.param("si", marks=pytest.mark.slow()), pytest.param("sk", marks=pytest.mark.slow()), pytest.param("sl", marks=pytest.mark.slow()), pytest.param("sq", marks=pytest.mark.slow()), pytest.param("sr", marks=pytest.mark.slow()), pytest.param("sv", marks=pytest.mark.slow()), pytest.param("ta", marks=pytest.mark.slow()), pytest.param("te", marks=pytest.mark.slow()), pytest.param("tl", marks=pytest.mark.slow()), pytest.param("tr", marks=pytest.mark.slow()), pytest.param("tt", marks=pytest.mark.slow()), pytest.param("ur", marks=pytest.mark.slow()), ] @pytest.mark.parametrize("lang", LANGUAGES) def test_tokenizer_explain(lang): tokenizer = get_lang_class(lang)().tokenizer examples = pytest.importorskip(f"spacy.lang.{lang}.examples") for sentence in examples.sentences: tokens = [t.text for t in tokenizer(sentence) if not t.is_space] debug_tokens = [t[1] for t in tokenizer.explain(sentence)] assert tokens == debug_tokens def test_tokenizer_explain_special_matcher(en_vocab): suffix_re = re.compile(r"[\.]$") infix_re = re.compile(r"[/]") rules = {"a.": [{"ORTH": "a."}]} tokenizer = Tokenizer( en_vocab, rules=rules, suffix_search=suffix_re.search, infix_finditer=infix_re.finditer, ) tokens = [t.text for t in tokenizer("a/a.")] explain_tokens = [t[1] for t in tokenizer.explain("a/a.")] assert tokens == explain_tokens @hypothesis.strategies.composite def sentence_strategy(draw: hypothesis.strategies.DrawFn, max_n_words: int = 4) -> str: """ Composite strategy for fuzzily generating sentence with varying interpunctation. draw (hypothesis.strategies.DrawFn): Protocol for drawing function allowing to fuzzily pick from hypothesis' strategies. max_n_words (int): Max. number of words in generated sentence. RETURNS (str): Fuzzily generated sentence. """ punctuation_and_space_regex = "|".join( [*[re.escape(p) for p in string.punctuation], r"\s"] ) sentence = [ [ draw(hypothesis.strategies.text(min_size=1)), draw(hypothesis.strategies.from_regex(punctuation_and_space_regex)), ] for _ in range( draw(hypothesis.strategies.integers(min_value=2, max_value=max_n_words)) ) ] return " ".join([token for token_pair in sentence for token in token_pair]) @pytest.mark.xfail @pytest.mark.parametrize("lang", LANGUAGES) @hypothesis.given(sentence=sentence_strategy()) def test_tokenizer_explain_fuzzy(lang: str, sentence: str) -> None: """ Tests whether output of tokenizer.explain() matches tokenizer output. Input generated by hypothesis. lang (str): Language to test. text (str): Fuzzily generated sentence to tokenize. """ tokenizer: Tokenizer = spacy.blank(lang).tokenizer tokens = [t.text for t in tokenizer(sentence) if not t.is_space] debug_tokens = [t[1] for t in tokenizer.explain(sentence)] assert tokens == debug_tokens, f"{tokens}, {debug_tokens}, {sentence}"