#!/usr/bin/env python # coding: utf8 """ Example of training spaCy's named entity recognizer, starting off with an existing model or a blank model. For more details, see the documentation: * Training: https://alpha.spacy.io/usage/training * NER: https://alpha.spacy.io/usage/linguistic-features#named-entities Developed for: spaCy 2.0.0a18 Last updated for: spaCy 2.0.0a18 """ from __future__ import unicode_literals, print_function import plac import random from pathlib import Path import spacy from spacy.gold import GoldParse, biluo_tags_from_offsets # training data TRAIN_DATA = [ ('Who is Shaka Khan?', [(7, 17, 'PERSON')]), ('I like London and Berlin.', [(7, 13, 'LOC'), (18, 24, 'LOC')]) ] @plac.annotations( model=("Model name. Defaults to blank 'en' model.", "option", "m", str), output_dir=("Optional output directory", "option", "o", Path), n_iter=("Number of training iterations", "option", "n", int)) def main(model=None, output_dir=None, n_iter=100): """Load the model, set up the pipeline and train the entity recognizer.""" if model is not None: nlp = spacy.load(model) # load existing spaCy model print("Loaded model '%s'" % model) else: nlp = spacy.blank('en') # create blank Language class print("Created blank 'en' model") # create the built-in pipeline components and add them to the pipeline # nlp.create_pipe works for built-ins that are registered with spaCy if 'ner' not in nlp.pipe_names: ner = nlp.create_pipe('ner') nlp.add_pipe(ner, last=True) # function that allows begin_training to get the training data get_data = lambda: reformat_train_data(nlp.tokenizer, TRAIN_DATA) # get names of other pipes to disable them during training other_pipes = [pipe for pipe in nlp.pipe_names if pipe != 'ner'] with nlp.disable_pipes(*other_pipes): # only train NER optimizer = nlp.begin_training(get_data) for itn in range(n_iter): random.shuffle(TRAIN_DATA) losses = {} for raw_text, entity_offsets in TRAIN_DATA: doc = nlp.make_doc(raw_text) gold = GoldParse(doc, entities=entity_offsets) nlp.update( [doc], # Batch of Doc objects [gold], # Batch of GoldParse objects drop=0.5, # Dropout -- make it harder to memorise data sgd=optimizer, # Callable to update weights losses=losses) print(losses) # test the trained model for text, _ in TRAIN_DATA: doc = nlp(text) print('Entities', [(ent.text, ent.label_) for ent in doc.ents]) print('Tokens', [(t.text, t.ent_type_, t.ent_iob) for t in doc]) # save model to output directory if output_dir is not None: output_dir = Path(output_dir) if not output_dir.exists(): output_dir.mkdir() nlp.to_disk(output_dir) print("Saved model to", output_dir) # test the saved model print("Loading from", output_dir) nlp2 = spacy.load(output_dir) for text, _ in TRAIN_DATA: doc = nlp2(text) print('Entities', [(ent.text, ent.label_) for ent in doc.ents]) print('Tokens', [(t.text, t.ent_type_, t.ent_iob) for t in doc]) def reformat_train_data(tokenizer, examples): """Reformat data to match JSON format. https://alpha.spacy.io/api/annotation#json-input tokenizer (Tokenizer): Tokenizer to process the raw text. examples (list): The trainig data. RETURNS (list): The reformatted training data.""" output = [] for i, (text, entity_offsets) in enumerate(examples): doc = tokenizer(text) ner_tags = biluo_tags_from_offsets(tokenizer(text), entity_offsets) words = [w.text for w in doc] tags = ['-'] * len(doc) heads = [0] * len(doc) deps = [''] * len(doc) sentence = (range(len(doc)), words, tags, heads, deps, ner_tags) output.append((text, [(sentence, [])])) return output if __name__ == '__main__': plac.call(main)