""" MALT-style dependency parser """ # coding: utf-8 # cython: infer_types=True from __future__ import unicode_literals from collections import Counter import ujson cimport cython cimport cython.parallel import numpy.random from cpython.ref cimport PyObject, Py_INCREF, Py_XDECREF from cpython.exc cimport PyErr_CheckSignals from libc.stdint cimport uint32_t, uint64_t from libc.string cimport memset, memcpy from libc.stdlib cimport malloc, calloc, free from thinc.typedefs cimport weight_t, class_t, feat_t, atom_t, hash_t from thinc.linear.avgtron cimport AveragedPerceptron from thinc.linalg cimport VecVec from thinc.structs cimport SparseArrayC, FeatureC, ExampleC from thinc.extra.eg cimport Example from cymem.cymem cimport Pool, Address from murmurhash.mrmr cimport hash64 from preshed.maps cimport MapStruct from preshed.maps cimport map_get from . import _parse_features from ._parse_features cimport CONTEXT_SIZE from ._parse_features cimport fill_context from .stateclass cimport StateClass from ._state cimport StateC from .transition_system import OracleError from .transition_system cimport TransitionSystem, Transition from ..structs cimport TokenC from ..tokens.doc cimport Doc from ..strings cimport StringStore from ..gold cimport GoldParse USE_FTRL = True DEBUG = False def set_debug(val): global DEBUG DEBUG = val def get_templates(name): pf = _parse_features if name == 'ner': return pf.ner elif name == 'debug': return pf.unigrams elif name.startswith('embed'): return (pf.words, pf.tags, pf.labels) else: return (pf.unigrams + pf.s0_n0 + pf.s1_n0 + pf.s1_s0 + pf.s0_n1 + pf.n0_n1 + \ pf.tree_shape + pf.trigrams) cdef class ParserModel(AveragedPerceptron): cdef int set_featuresC(self, atom_t* context, FeatureC* features, const StateC* state) nogil: fill_context(context, state) nr_feat = self.extracter.set_features(features, context) return nr_feat def update(self, Example eg, itn=0): """ Does regression on negative cost. Sort of cute? """ self.time += 1 cdef int best = arg_max_if_gold(eg.c.scores, eg.c.costs, eg.c.nr_class) cdef int guess = eg.guess if guess == best or best == -1: return 0.0 cdef FeatureC feat cdef int clas cdef weight_t gradient if USE_FTRL: for feat in eg.c.features[:eg.c.nr_feat]: for clas in range(eg.c.nr_class): if eg.c.is_valid[clas] and eg.c.scores[clas] >= eg.c.scores[best]: gradient = eg.c.scores[clas] + eg.c.costs[clas] self.update_weight_ftrl(feat.key, clas, feat.value * gradient) else: for feat in eg.c.features[:eg.c.nr_feat]: self.update_weight(feat.key, guess, feat.value * eg.c.costs[guess]) self.update_weight(feat.key, best, -feat.value * eg.c.costs[guess]) return eg.c.costs[guess] def update_from_histories(self, TransitionSystem moves, Doc doc, histories, weight_t min_grad=0.0): cdef Pool mem = Pool() features = <FeatureC*>mem.alloc(self.nr_feat, sizeof(FeatureC)) cdef StateClass stcls cdef class_t clas self.time += 1 cdef atom_t[CONTEXT_SIZE] atoms histories = [(grad, hist) for grad, hist in histories if abs(grad) >= min_grad and hist] if not histories: return None gradient = [Counter() for _ in range(max([max(h)+1 for _, h in histories]))] for d_loss, history in histories: stcls = StateClass.init(doc.c, doc.length) moves.initialize_state(stcls.c) for clas in history: nr_feat = self.set_featuresC(atoms, features, stcls.c) clas_grad = gradient[clas] for feat in features[:nr_feat]: clas_grad[feat.key] += d_loss * feat.value moves.c[clas].do(stcls.c, moves.c[clas].label) cdef feat_t key cdef weight_t d_feat for clas, clas_grad in enumerate(gradient): for key, d_feat in clas_grad.items(): if d_feat != 0: self.update_weight_ftrl(key, clas, d_feat) cdef class Parser: """ Base class of the DependencyParser and EntityRecognizer. """ @classmethod def load(cls, path, Vocab vocab, TransitionSystem=None, require=False, **cfg): """ Load the statistical model from the supplied path. Arguments: path (Path): The path to load from. vocab (Vocab): The vocabulary. Must be shared by the documents to be processed. require (bool): Whether to raise an error if the files are not found. Returns (Parser): The newly constructed object. """ with (path / 'config.json').open() as file_: cfg = ujson.load(file_) # TODO: remove this shim when we don't have to support older data if 'labels' in cfg and 'actions' not in cfg: cfg['actions'] = cfg.pop('labels') # TODO: remove this shim when we don't have to support older data for action_name, labels in dict(cfg.get('actions', {})).items(): # We need this to be sorted if isinstance(labels, dict): labels = list(sorted(labels.keys())) cfg['actions'][action_name] = labels self = cls(vocab, TransitionSystem=TransitionSystem, model=None, **cfg) if (path / 'model').exists(): self.model.load(str(path / 'model')) elif require: raise IOError( "Required file %s/model not found when loading" % str(path)) return self def __init__(self, Vocab vocab, TransitionSystem=None, ParserModel model=None, **cfg): """ Create a Parser. Arguments: vocab (Vocab): The vocabulary object. Must be shared with documents to be processed. model (thinc.linear.AveragedPerceptron): The statistical model. Returns (Parser): The newly constructed object. """ if TransitionSystem is None: TransitionSystem = self.TransitionSystem self.vocab = vocab cfg['actions'] = TransitionSystem.get_actions(**cfg) self.moves = TransitionSystem(vocab.strings, cfg['actions']) # TODO: Remove this when we no longer need to support old-style models if isinstance(cfg.get('features'), basestring): cfg['features'] = get_templates(cfg['features']) elif 'features' not in cfg: cfg['features'] = self.feature_templates self.model = ParserModel(cfg['features']) self.model.l1_penalty = cfg.get('L1', 0.0) self.model.learn_rate = cfg.get('learn_rate', 0.001) self.cfg = cfg # TODO: This is a pretty hacky fix to the problem of adding more # labels. The issue is they come in out of order, if labels are # added during training for label in cfg.get('extra_labels', []): self.add_label(label) def __reduce__(self): return (Parser, (self.vocab, self.moves, self.model), None, None) def __call__(self, Doc tokens): """ Apply the entity recognizer, setting the annotations onto the Doc object. Arguments: doc (Doc): The document to be processed. Returns: None """ cdef int nr_feat = self.model.nr_feat with nogil: status = self.parseC(tokens.c, tokens.length, nr_feat) # Check for KeyboardInterrupt etc. Untested PyErr_CheckSignals() if status != 0: raise ParserStateError(tokens) self.moves.finalize_doc(tokens) def pipe(self, stream, int batch_size=1000, int n_threads=2): """ Process a stream of documents. Arguments: stream: The sequence of documents to process. batch_size (int): The number of documents to accumulate into a working set. n_threads (int): The number of threads with which to work on the buffer in parallel. Yields (Doc): Documents, in order. """ cdef Pool mem = Pool() cdef TokenC** doc_ptr = <TokenC**>mem.alloc(batch_size, sizeof(TokenC*)) cdef int* lengths = <int*>mem.alloc(batch_size, sizeof(int)) cdef Doc doc cdef int i cdef int nr_feat = self.model.nr_feat cdef int status queue = [] for doc in stream: doc_ptr[len(queue)] = doc.c lengths[len(queue)] = doc.length queue.append(doc) if len(queue) == batch_size: with nogil: for i in cython.parallel.prange(batch_size, num_threads=n_threads): status = self.parseC(doc_ptr[i], lengths[i], nr_feat) if status != 0: with gil: raise ParserStateError(queue[i]) PyErr_CheckSignals() for doc in queue: self.moves.finalize_doc(doc) yield doc queue = [] batch_size = len(queue) with nogil: for i in cython.parallel.prange(batch_size, num_threads=n_threads): status = self.parseC(doc_ptr[i], lengths[i], nr_feat) if status != 0: with gil: raise ParserStateError(queue[i]) PyErr_CheckSignals() for doc in queue: self.moves.finalize_doc(doc) yield doc cdef int parseC(self, TokenC* tokens, int length, int nr_feat) nogil: state = new StateC(tokens, length) # NB: This can change self.moves.n_moves! # I think this causes memory errors if called by .pipe() self.moves.initialize_state(state) nr_class = self.moves.n_moves cdef ExampleC eg eg.nr_feat = nr_feat eg.nr_atom = CONTEXT_SIZE eg.nr_class = nr_class eg.features = <FeatureC*>calloc(sizeof(FeatureC), nr_feat) eg.atoms = <atom_t*>calloc(sizeof(atom_t), CONTEXT_SIZE) eg.scores = <weight_t*>calloc(sizeof(weight_t), nr_class) eg.is_valid = <int*>calloc(sizeof(int), nr_class) cdef int i while not state.is_final(): eg.nr_feat = self.model.set_featuresC(eg.atoms, eg.features, state) self.moves.set_valid(eg.is_valid, state) self.model.set_scoresC(eg.scores, eg.features, eg.nr_feat) guess = VecVec.arg_max_if_true(eg.scores, eg.is_valid, eg.nr_class) if guess < 0: return 1 action = self.moves.c[guess] action.do(state, action.label) memset(eg.scores, 0, sizeof(eg.scores[0]) * eg.nr_class) for i in range(eg.nr_class): eg.is_valid[i] = 1 self.moves.finalize_state(state) for i in range(length): tokens[i] = state._sent[i] del state free(eg.features) free(eg.atoms) free(eg.scores) free(eg.is_valid) return 0 def update(self, Doc tokens, GoldParse gold, itn=0, double drop=0.0): """ Update the statistical model. Arguments: doc (Doc): The example document for the update. gold (GoldParse): The gold-standard annotations, to calculate the loss. Returns (float): The loss on this example. """ self.moves.preprocess_gold(gold) cdef StateClass stcls = StateClass.init(tokens.c, tokens.length) self.moves.initialize_state(stcls.c) cdef Pool mem = Pool() cdef Example eg = Example( nr_class=self.moves.n_moves, nr_atom=CONTEXT_SIZE, nr_feat=self.model.nr_feat) cdef weight_t loss = 0 cdef Transition action cdef double dropout_rate = self.cfg.get('dropout', drop) while not stcls.is_final(): eg.c.nr_feat = self.model.set_featuresC(eg.c.atoms, eg.c.features, stcls.c) dropout(eg.c.features, eg.c.nr_feat, dropout_rate) self.moves.set_costs(eg.c.is_valid, eg.c.costs, stcls, gold) self.model.set_scoresC(eg.c.scores, eg.c.features, eg.c.nr_feat) guess = VecVec.arg_max_if_true(eg.c.scores, eg.c.is_valid, eg.c.nr_class) self.model.update(eg) action = self.moves.c[guess] action.do(stcls.c, action.label) loss += eg.costs[guess] eg.fill_scores(0, eg.c.nr_class) eg.fill_costs(0, eg.c.nr_class) eg.fill_is_valid(1, eg.c.nr_class) self.moves.finalize_state(stcls.c) return loss def step_through(self, Doc doc, GoldParse gold=None): """ Set up a stepwise state, to introspect and control the transition sequence. Arguments: doc (Doc): The document to step through. gold (GoldParse): Optional gold parse Returns (StepwiseState): A state object, to step through the annotation process. """ return StepwiseState(self, doc, gold=gold) def from_transition_sequence(self, Doc doc, sequence): """Control the annotations on a document by specifying a transition sequence to follow. Arguments: doc (Doc): The document to annotate. sequence: A sequence of action names, as unicode strings. Returns: None """ with self.step_through(doc) as stepwise: for transition in sequence: stepwise.transition(transition) def add_label(self, label): # Doesn't set label into serializer -- subclasses override it to do that. for action in self.moves.action_types: added = self.moves.add_action(action, label) if added: # Important that the labels be stored as a list! We need the # order, or the model goes out of synch self.cfg.setdefault('extra_labels', []).append(label) cdef int dropout(FeatureC* feats, int nr_feat, float prob) except -1: if prob <= 0 or prob >= 1.: return 0 cdef double[::1] py_probs = numpy.random.uniform(0., 1., nr_feat) cdef double* probs = &py_probs[0] for i in range(nr_feat): if probs[i] >= prob: feats[i].value /= prob else: feats[i].value = 0. cdef class StepwiseState: cdef readonly StateClass stcls cdef readonly Example eg cdef readonly Doc doc cdef readonly GoldParse gold cdef readonly Parser parser def __init__(self, Parser parser, Doc doc, GoldParse gold=None): self.parser = parser self.doc = doc if gold is not None: self.gold = gold self.parser.moves.preprocess_gold(self.gold) else: self.gold = GoldParse(doc) self.stcls = StateClass.init(doc.c, doc.length) self.parser.moves.initialize_state(self.stcls.c) self.eg = Example( nr_class=self.parser.moves.n_moves, nr_atom=CONTEXT_SIZE, nr_feat=self.parser.model.nr_feat) def __enter__(self): return self def __exit__(self, type, value, traceback): self.finish() @property def is_final(self): return self.stcls.is_final() @property def stack(self): return self.stcls.stack @property def queue(self): return self.stcls.queue @property def heads(self): return [self.stcls.H(i) for i in range(self.stcls.c.length)] @property def deps(self): return [self.doc.vocab.strings[self.stcls.c._sent[i].dep] for i in range(self.stcls.c.length)] @property def costs(self): """ Find the action-costs for the current state. """ if not self.gold: raise ValueError("Can't set costs: No GoldParse provided") self.parser.moves.set_costs(self.eg.c.is_valid, self.eg.c.costs, self.stcls, self.gold) costs = {} for i in range(self.parser.moves.n_moves): if not self.eg.c.is_valid[i]: continue transition = self.parser.moves.c[i] name = self.parser.moves.move_name(transition.move, transition.label) costs[name] = self.eg.c.costs[i] return costs def predict(self): self.eg.reset() self.eg.c.nr_feat = self.parser.model.set_featuresC(self.eg.c.atoms, self.eg.c.features, self.stcls.c) self.parser.moves.set_valid(self.eg.c.is_valid, self.stcls.c) self.parser.model.set_scoresC(self.eg.c.scores, self.eg.c.features, self.eg.c.nr_feat) cdef Transition action = self.parser.moves.c[self.eg.guess] return self.parser.moves.move_name(action.move, action.label) def transition(self, action_name=None): if action_name is None: action_name = self.predict() moves = {'S': 0, 'D': 1, 'L': 2, 'R': 3} if action_name == '_': action_name = self.predict() action = self.parser.moves.lookup_transition(action_name) elif action_name == 'L' or action_name == 'R': self.predict() move = moves[action_name] clas = _arg_max_clas(self.eg.c.scores, move, self.parser.moves.c, self.eg.c.nr_class) action = self.parser.moves.c[clas] else: action = self.parser.moves.lookup_transition(action_name) action.do(self.stcls.c, action.label) def finish(self): if self.stcls.is_final(): self.parser.moves.finalize_state(self.stcls.c) self.doc.set_parse(self.stcls.c._sent) self.parser.moves.finalize_doc(self.doc) class ParserStateError(ValueError): def __init__(self, doc): ValueError.__init__(self, "Error analysing doc -- no valid actions available. This should " "never happen, so please report the error on the issue tracker. " "Here's the thread to do so --- reopen it if it's closed:\n" "https://github.com/spacy-io/spaCy/issues/429\n" "Please include the text that the parser failed on, which is:\n" "%s" % repr(doc.text)) cdef int arg_max_if_gold(const weight_t* scores, const weight_t* costs, int n) nogil: cdef int best = -1 for i in range(n): if costs[i] <= 0: if best == -1 or scores[i] > scores[best]: best = i return best cdef int _arg_max_clas(const weight_t* scores, int move, const Transition* actions, int nr_class) except -1: cdef weight_t score = 0 cdef int mode = -1 cdef int i for i in range(nr_class): if actions[i].move == move and (mode == -1 or scores[i] >= score): mode = i score = scores[i] return mode