import pytest from spacy import util from spacy.lang.en import English from spacy.language import Language from spacy.tests.util import make_tempdir def test_label_types(): nlp = Language() nlp.add_pipe(nlp.create_pipe("morphologizer")) nlp.get_pipe("morphologizer").add_label("Feat=A") with pytest.raises(ValueError): nlp.get_pipe("morphologizer").add_label(9) TRAIN_DATA = [ ( "I like green eggs", { "morphs": ["Feat=N", "Feat=V", "Feat=J", "Feat=N"], "pos": ["NOUN", "VERB", "ADJ", "NOUN"], }, ), ( "Eat blue ham", {"morphs": ["Feat=V", "Feat=J", "Feat=N"], "pos": ["VERB", "ADJ", "NOUN"]}, ), ] def test_overfitting_IO(): # Simple test to try and quickly overfit the morphologizer - ensuring the ML models work correctly nlp = English() morphologizer = nlp.create_pipe("morphologizer") for inst in TRAIN_DATA: for morph, pos in zip(inst[1]["morphs"], inst[1]["pos"]): morphologizer.add_label(morph + "|POS=" + pos) nlp.add_pipe(morphologizer) optimizer = nlp.begin_training() for i in range(50): losses = {} nlp.update(TRAIN_DATA, sgd=optimizer, losses=losses) assert losses["morphologizer"] < 0.00001 # test the trained model test_text = "I like blue eggs" doc = nlp(test_text) gold_morphs = [ "Feat=N|POS=NOUN", "Feat=V|POS=VERB", "Feat=J|POS=ADJ", "Feat=N|POS=NOUN", ] assert [t.morph_ for t in doc] == gold_morphs # Also test the results are still the same after IO with make_tempdir() as tmp_dir: nlp.to_disk(tmp_dir) nlp2 = util.load_model_from_path(tmp_dir) doc2 = nlp2(test_text) assert gold_morphs == [t.morph_ for t in doc2]