import pytest from spacy.gold import docs_to_json from spacy.gold.converters import iob2docs, conll_ner2docs from spacy.gold.converters.conllu2json import conllu2json from spacy.lang.en import English from spacy.cli.pretrain import make_docs # TODO # from spacy.gold.converters import conllu2docs def test_cli_converters_conllu2json(): # from NorNE: https://github.com/ltgoslo/norne/blob/3d23274965f513f23aa48455b28b1878dad23c05/ud/nob/no_bokmaal-ud-dev.conllu lines = [ "1\tDommer\tdommer\tNOUN\t_\tDefinite=Ind|Gender=Masc|Number=Sing\t2\tappos\t_\tO", "2\tFinn\tFinn\tPROPN\t_\tGender=Masc\t4\tnsubj\t_\tB-PER", "3\tEilertsen\tEilertsen\tPROPN\t_\t_\t2\tname\t_\tI-PER", "4\tavstår\tavstå\tVERB\t_\tMood=Ind|Tense=Pres|VerbForm=Fin\t0\troot\t_\tO", ] input_data = "\n".join(lines) converted = conllu2json(input_data, n_sents=1) assert len(converted) == 1 assert converted[0]["id"] == 0 assert len(converted[0]["paragraphs"]) == 1 assert len(converted[0]["paragraphs"][0]["sentences"]) == 1 sent = converted[0]["paragraphs"][0]["sentences"][0] assert len(sent["tokens"]) == 4 tokens = sent["tokens"] assert [t["orth"] for t in tokens] == ["Dommer", "Finn", "Eilertsen", "avstår"] assert [t["tag"] for t in tokens] == ["NOUN", "PROPN", "PROPN", "VERB"] assert [t["head"] for t in tokens] == [1, 2, -1, 0] assert [t["dep"] for t in tokens] == ["appos", "nsubj", "name", "ROOT"] assert [t["ner"] for t in tokens] == ["O", "B-PER", "L-PER", "O"] @pytest.mark.parametrize( "lines", [ ( "1\tDommer\tdommer\tNOUN\t_\tDefinite=Ind|Gender=Masc|Number=Sing\t2\tappos\t_\tname=O", "2\tFinn\tFinn\tPROPN\t_\tGender=Masc\t4\tnsubj\t_\tSpaceAfter=No|name=B-PER", "3\tEilertsen\tEilertsen\tPROPN\t_\t_\t2\tname\t_\tname=I-PER", "4\tavstår\tavstå\tVERB\t_\tMood=Ind|Tense=Pres|VerbForm=Fin\t0\troot\t_\tSpaceAfter=No|name=O", "5\t.\t$.\tPUNCT\t_\t_\t4\tpunct\t_\tname=B-BAD", ), ( "1\tDommer\tdommer\tNOUN\t_\tDefinite=Ind|Gender=Masc|Number=Sing\t2\tappos\t_\t_", "2\tFinn\tFinn\tPROPN\t_\tGender=Masc\t4\tnsubj\t_\tSpaceAfter=No|NE=B-PER", "3\tEilertsen\tEilertsen\tPROPN\t_\t_\t2\tname\t_\tNE=L-PER", "4\tavstår\tavstå\tVERB\t_\tMood=Ind|Tense=Pres|VerbForm=Fin\t0\troot\t_\tSpaceAfter=No", "5\t.\t$.\tPUNCT\t_\t_\t4\tpunct\t_\tNE=B-BAD", ), ], ) def test_cli_converters_conllu2json_name_ner_map(lines): input_data = "\n".join(lines) converted = conllu2json(input_data, n_sents=1, ner_map={"PER": "PERSON", "BAD": ""}) assert len(converted) == 1 assert converted[0]["id"] == 0 assert len(converted[0]["paragraphs"]) == 1 assert converted[0]["paragraphs"][0]["raw"] == "Dommer FinnEilertsen avstår." assert len(converted[0]["paragraphs"][0]["sentences"]) == 1 sent = converted[0]["paragraphs"][0]["sentences"][0] assert len(sent["tokens"]) == 5 tokens = sent["tokens"] assert [t["orth"] for t in tokens] == ["Dommer", "Finn", "Eilertsen", "avstår", "."] assert [t["tag"] for t in tokens] == ["NOUN", "PROPN", "PROPN", "VERB", "PUNCT"] assert [t["head"] for t in tokens] == [1, 2, -1, 0, -1] assert [t["dep"] for t in tokens] == ["appos", "nsubj", "name", "ROOT", "punct"] assert [t["ner"] for t in tokens] == ["O", "B-PERSON", "L-PERSON", "O", "O"] def test_cli_converters_conllu2json_subtokens(): # https://raw.githubusercontent.com/ohenrik/nb_news_ud_sm/master/original_data/no-ud-dev-ner.conllu lines = [ "1\tDommer\tdommer\tNOUN\t_\tDefinite=Ind|Gender=Masc|Number=Sing\t2\tappos\t_\tname=O", "2-3\tFE\t_\t_\t_\t_\t_\t_\t_\t_", "2\tFinn\tFinn\tPROPN\t_\tGender=Masc\t4\tnsubj\t_\tname=B-PER", "3\tEilertsen\tEilertsen\tX\t_\tGender=Fem|Tense=past\t2\tname\t_\tname=I-PER", "4\tavstår\tavstå\tVERB\t_\tMood=Ind|Tense=Pres|VerbForm=Fin\t0\troot\t_\tSpaceAfter=No|name=O", "5\t.\t$.\tPUNCT\t_\t_\t4\tpunct\t_\tname=O", ] input_data = "\n".join(lines) converted = conllu2json( input_data, n_sents=1, merge_subtokens=True, append_morphology=True ) assert len(converted) == 1 assert converted[0]["id"] == 0 assert len(converted[0]["paragraphs"]) == 1 assert converted[0]["paragraphs"][0]["raw"] == "Dommer FE avstår." assert len(converted[0]["paragraphs"][0]["sentences"]) == 1 sent = converted[0]["paragraphs"][0]["sentences"][0] assert len(sent["tokens"]) == 4 tokens = sent["tokens"] print(tokens) assert [t["orth"] for t in tokens] == ["Dommer", "FE", "avstår", "."] assert [t["tag"] for t in tokens] == [ "NOUN__Definite=Ind|Gender=Masc|Number=Sing", "PROPN_X__Gender=Fem,Masc|Tense=past", "VERB__Mood=Ind|Tense=Pres|VerbForm=Fin", "PUNCT", ] assert [t["pos"] for t in tokens] == ["NOUN", "PROPN", "VERB", "PUNCT"] assert [t["morph"] for t in tokens] == [ "Definite=Ind|Gender=Masc|Number=Sing", "Gender=Fem,Masc|Tense=past", "Mood=Ind|Tense=Pres|VerbForm=Fin", "", ] assert [t["lemma"] for t in tokens] == ["dommer", "Finn Eilertsen", "avstå", "$."] assert [t["head"] for t in tokens] == [1, 1, 0, -1] assert [t["dep"] for t in tokens] == ["appos", "nsubj", "ROOT", "punct"] assert [t["ner"] for t in tokens] == ["O", "U-PER", "O", "O"] def test_cli_converters_iob2json(en_vocab): lines = [ "I|O like|O London|I-GPE and|O New|B-GPE York|I-GPE City|I-GPE .|O", "I|O like|O London|B-GPE and|O New|B-GPE York|I-GPE City|I-GPE .|O", "I|PRP|O like|VBP|O London|NNP|I-GPE and|CC|O New|NNP|B-GPE York|NNP|I-GPE City|NNP|I-GPE .|.|O", "I|PRP|O like|VBP|O London|NNP|B-GPE and|CC|O New|NNP|B-GPE York|NNP|I-GPE City|NNP|I-GPE .|.|O", ] input_data = "\n".join(lines) converted_docs = iob2docs(input_data, en_vocab, n_sents=10) assert len(converted_docs) == 1 converted = docs_to_json(converted_docs) assert converted["id"] == 0 assert len(converted["paragraphs"]) == 1 assert len(converted["paragraphs"][0]["sentences"]) == 4 for i in range(0, 4): sent = converted["paragraphs"][0]["sentences"][i] assert len(sent["tokens"]) == 8 tokens = sent["tokens"] # fmt: off assert [t["orth"] for t in tokens] == ["I", "like", "London", "and", "New", "York", "City", "."] assert len(converted_docs[0].ents) == 8 for ent in converted_docs[0].ents: assert(ent.text in ["New York City", "London"]) def test_cli_converters_conll_ner2json(): lines = [ "-DOCSTART- -X- O O", "", "I\tO", "like\tO", "London\tB-GPE", "and\tO", "New\tB-GPE", "York\tI-GPE", "City\tI-GPE", ".\tO", "", "I O", "like O", "London B-GPE", "and O", "New B-GPE", "York I-GPE", "City I-GPE", ". O", "", "I PRP O", "like VBP O", "London NNP B-GPE", "and CC O", "New NNP B-GPE", "York NNP I-GPE", "City NNP I-GPE", ". . O", "", "I PRP _ O", "like VBP _ O", "London NNP _ B-GPE", "and CC _ O", "New NNP _ B-GPE", "York NNP _ I-GPE", "City NNP _ I-GPE", ". . _ O", "", "I\tPRP\t_\tO", "like\tVBP\t_\tO", "London\tNNP\t_\tB-GPE", "and\tCC\t_\tO", "New\tNNP\t_\tB-GPE", "York\tNNP\t_\tI-GPE", "City\tNNP\t_\tI-GPE", ".\t.\t_\tO", ] input_data = "\n".join(lines) converted_docs = conll_ner2docs(input_data, n_sents=10) assert len(converted_docs) == 1 converted = docs_to_json(converted_docs) assert converted["id"] == 0 assert len(converted["paragraphs"]) == 1 assert len(converted["paragraphs"][0]["sentences"]) == 5 for i in range(0, 5): sent = converted["paragraphs"][0]["sentences"][i] assert len(sent["tokens"]) == 8 tokens = sent["tokens"] # fmt: off assert [t["orth"] for t in tokens] == ["I", "like", "London", "and", "New", "York", "City", "."] # fmt: on assert len(converted_docs[0].ents) == 10 for ent in converted_docs[0].ents: assert (ent.text in ["New York City", "London"]) def test_pretrain_make_docs(): nlp = English() valid_jsonl_text = {"text": "Some text"} docs, skip_count = make_docs(nlp, [valid_jsonl_text], 1, 10) assert len(docs) == 1 assert skip_count == 0 valid_jsonl_tokens = {"tokens": ["Some", "tokens"]} docs, skip_count = make_docs(nlp, [valid_jsonl_tokens], 1, 10) assert len(docs) == 1 assert skip_count == 0 invalid_jsonl_type = 0 with pytest.raises(TypeError): make_docs(nlp, [invalid_jsonl_type], 1, 100) invalid_jsonl_key = {"invalid": "Does not matter"} with pytest.raises(ValueError): make_docs(nlp, [invalid_jsonl_key], 1, 100) empty_jsonl_text = {"text": ""} docs, skip_count = make_docs(nlp, [empty_jsonl_text], 1, 10) assert len(docs) == 0 assert skip_count == 1 empty_jsonl_tokens = {"tokens": []} docs, skip_count = make_docs(nlp, [empty_jsonl_tokens], 1, 10) assert len(docs) == 0 assert skip_count == 1 too_short_jsonl = {"text": "This text is not long enough"} docs, skip_count = make_docs(nlp, [too_short_jsonl], 10, 15) assert len(docs) == 0 assert skip_count == 0 too_long_jsonl = {"text": "This text contains way too much tokens for this test"} docs, skip_count = make_docs(nlp, [too_long_jsonl], 1, 5) assert len(docs) == 0 assert skip_count == 0