from typing import Optional, Callable from thinc.api import Model from .stop_words import STOP_WORDS from .lex_attrs import LEX_ATTRS from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS from .punctuation import TOKENIZER_SUFFIXES from .syntax_iterators import SYNTAX_ITERATORS from ...language import Language, BaseDefaults from ...pipeline import Lemmatizer class PersianDefaults(BaseDefaults): tokenizer_exceptions = TOKENIZER_EXCEPTIONS suffixes = TOKENIZER_SUFFIXES lex_attr_getters = LEX_ATTRS syntax_iterators = SYNTAX_ITERATORS stop_words = STOP_WORDS writing_system = {"direction": "rtl", "has_case": False, "has_letters": True} class Persian(Language): lang = "fa" Defaults = PersianDefaults @Persian.factory( "lemmatizer", assigns=["token.lemma"], default_config={ "model": None, "mode": "rule", "overwrite": False, "scorer": {"@scorers": "spacy.lemmatizer_scorer.v1"}, }, default_score_weights={"lemma_acc": 1.0}, ) def make_lemmatizer( nlp: Language, model: Optional[Model], name: str, mode: str, overwrite: bool, scorer: Optional[Callable], ): return Lemmatizer( nlp.vocab, model, name, mode=mode, overwrite=overwrite, scorer=scorer ) __all__ = ["Persian"]