# coding: utf-8
from __future__ import unicode_literals

from ...vectors import Vectors
from ...tokenizer import Tokenizer
from ..util import add_vecs_to_vocab, get_doc

import numpy
import pytest


@pytest.fixture
def strings():
    return ["apple", "orange"]

@pytest.fixture
def vectors():
    return [
        ("apple", [1, 2, 3]),
        ("orange", [-1, -2, -3]),
        ('and', [-1, -1, -1]),
        ('juice', [5, 5, 10]),
        ('pie', [7, 6.3, 8.9])]


@pytest.fixture
def data():
    return numpy.asarray([[0.0, 1.0, 2.0], [3.0, -2.0, 4.0]], dtype='f')


@pytest.fixture()
def vocab(en_vocab, vectors):
    add_vecs_to_vocab(en_vocab, vectors)
    return en_vocab


def test_init_vectors_with_data(strings, data):
    v = Vectors(strings, data=data)
    assert v.shape == data.shape

def test_init_vectors_with_width(strings):
    v = Vectors(strings, width=3)
    for string in strings:
        v.add(string)
    assert v.shape == (len(strings), 3)


def test_get_vector(strings, data):
    v = Vectors(strings, data=data)
    for string in strings:
        v.add(string)
    assert list(v[strings[0]]) == list(data[0])
    assert list(v[strings[0]]) != list(data[1])
    assert list(v[strings[1]]) != list(data[0])


def test_set_vector(strings, data):
    orig = data.copy()
    v = Vectors(strings, data=data)
    for string in strings:
        v.add(string)
    assert list(v[strings[0]]) == list(orig[0])
    assert list(v[strings[0]]) != list(orig[1])
    v[strings[0]] = data[1]
    assert list(v[strings[0]]) == list(orig[1])
    assert list(v[strings[0]]) != list(orig[0])



@pytest.fixture()
def tokenizer_v(vocab):
    return Tokenizer(vocab, {}, None, None, None)


@pytest.mark.parametrize('text', ["apple and orange"])
def test_vectors_token_vector(tokenizer_v, vectors, text):
    doc = tokenizer_v(text)
    assert vectors[0] == (doc[0].text, list(doc[0].vector))
    assert vectors[1] == (doc[2].text, list(doc[2].vector))


@pytest.mark.parametrize('text', ["apple", "orange"])
def test_vectors_lexeme_vector(vocab, text):
    lex = vocab[text]
    assert list(lex.vector)
    assert lex.vector_norm


@pytest.mark.parametrize('text', [["apple", "and", "orange"]])
def test_vectors_doc_vector(vocab, text):
    doc = get_doc(vocab, text)
    assert list(doc.vector)
    assert doc.vector_norm


@pytest.mark.parametrize('text', [["apple", "and", "orange"]])
def test_vectors_span_vector(vocab, text):
    span = get_doc(vocab, text)[0:2]
    assert list(span.vector)
    assert span.vector_norm


@pytest.mark.parametrize('text', ["apple orange"])
def test_vectors_token_token_similarity(tokenizer_v, text):
    doc = tokenizer_v(text)
    assert doc[0].similarity(doc[1]) == doc[1].similarity(doc[0])
    assert -1. < doc[0].similarity(doc[1]) < 1.0


@pytest.mark.parametrize('text1,text2', [("apple", "orange")])
def test_vectors_token_lexeme_similarity(tokenizer_v, vocab, text1, text2):
    token = tokenizer_v(text1)
    lex = vocab[text2]
    assert token.similarity(lex) == lex.similarity(token)
    assert -1. < token.similarity(lex) < 1.0


@pytest.mark.parametrize('text', [["apple", "orange", "juice"]])
def test_vectors_token_span_similarity(vocab, text):
    doc = get_doc(vocab, text)
    assert doc[0].similarity(doc[1:3]) == doc[1:3].similarity(doc[0])
    assert -1. < doc[0].similarity(doc[1:3]) < 1.0


@pytest.mark.parametrize('text', [["apple", "orange", "juice"]])
def test_vectors_token_doc_similarity(vocab, text):
    doc = get_doc(vocab, text)
    assert doc[0].similarity(doc) == doc.similarity(doc[0])
    assert -1. < doc[0].similarity(doc) < 1.0


@pytest.mark.parametrize('text', [["apple", "orange", "juice"]])
def test_vectors_lexeme_span_similarity(vocab, text):
    doc = get_doc(vocab, text)
    lex = vocab[text[0]]
    assert lex.similarity(doc[1:3]) == doc[1:3].similarity(lex)
    assert -1. < doc.similarity(doc[1:3]) < 1.0


@pytest.mark.parametrize('text1,text2', [("apple", "orange")])
def test_vectors_lexeme_lexeme_similarity(vocab, text1, text2):
    lex1 = vocab[text1]
    lex2 = vocab[text2]
    assert lex1.similarity(lex2) == lex2.similarity(lex1)
    assert -1. < lex1.similarity(lex2) < 1.0


@pytest.mark.parametrize('text', [["apple", "orange", "juice"]])
def test_vectors_lexeme_doc_similarity(vocab, text):
    doc = get_doc(vocab, text)
    lex = vocab[text[0]]
    assert lex.similarity(doc) == doc.similarity(lex)
    assert -1. < lex.similarity(doc) < 1.0


@pytest.mark.parametrize('text', [["apple", "orange", "juice"]])
def test_vectors_span_span_similarity(vocab, text):
    doc = get_doc(vocab, text)
    assert doc[0:2].similarity(doc[1:3]) == doc[1:3].similarity(doc[0:2])
    assert -1. < doc[0:2].similarity(doc[1:3]) < 1.0


@pytest.mark.parametrize('text', [["apple", "orange", "juice"]])
def test_vectors_span_doc_similarity(vocab, text):
    doc = get_doc(vocab, text)
    assert doc[0:2].similarity(doc) == doc.similarity(doc[0:2])
    assert -1. < doc[0:2].similarity(doc) < 1.0


@pytest.mark.parametrize('text1,text2', [
    (["apple", "and", "apple", "pie"], ["orange", "juice"])])
def test_vectors_doc_doc_similarity(vocab, text1, text2):
    doc1 = get_doc(vocab, text1)
    doc2 = get_doc(vocab, text2)
    assert doc1.similarity(doc2) == doc2.similarity(doc1)
    assert -1. < doc1.similarity(doc2) < 1.0