# coding: utf-8 from __future__ import unicode_literals from spacy.vocab import Vocab from spacy.tokens import Doc from ..util import get_doc def test_spans_merge_tokens(en_tokenizer): text = "Los Angeles start." heads = [1, 1, 0, -1] tokens = en_tokenizer(text) doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads) assert len(doc) == 4 assert doc[0].head.text == 'Angeles' assert doc[1].head.text == 'start' doc.merge(0, len('Los Angeles'), tag='NNP', lemma='Los Angeles', ent_type='GPE') assert len(doc) == 3 assert doc[0].text == 'Los Angeles' assert doc[0].head.text == 'start' doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads) assert len(doc) == 4 assert doc[0].head.text == 'Angeles' assert doc[1].head.text == 'start' doc.merge(0, len('Los Angeles'), tag='NNP', lemma='Los Angeles', label='GPE') assert len(doc) == 3 assert doc[0].text == 'Los Angeles' assert doc[0].head.text == 'start' assert doc[0].ent_type_ == 'GPE' def test_spans_merge_heads(en_tokenizer): text = "I found a pilates class near work." heads = [1, 0, 2, 1, -3, -1, -1, -6] tokens = en_tokenizer(text) doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads) assert len(doc) == 8 doc.merge(doc[3].idx, doc[4].idx + len(doc[4]), tag=doc[4].tag_, lemma='pilates class', ent_type='O') assert len(doc) == 7 assert doc[0].head.i == 1 assert doc[1].head.i == 1 assert doc[2].head.i == 3 assert doc[3].head.i == 1 assert doc[4].head.i in [1, 3] assert doc[5].head.i == 4 def test_span_np_merges(en_tokenizer): text = "displaCy is a parse tool built with Javascript" heads = [1, 0, 2, 1, -3, -1, -1, -1] tokens = en_tokenizer(text) doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads) assert doc[4].head.i == 1 doc.merge(doc[2].idx, doc[4].idx + len(doc[4]), tag='NP', lemma='tool', ent_type='O') assert doc[2].head.i == 1 text = "displaCy is a lightweight and modern dependency parse tree visualization tool built with CSS3 and JavaScript." heads = [1, 0, 8, 3, -1, -2, 4, 3, 1, 1, -9, -1, -1, -1, -1, -2, -15] tokens = en_tokenizer(text) doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads) ents = [(e[0].idx, e[-1].idx + len(e[-1]), e.label_, e.lemma_) for e in doc.ents] for start, end, label, lemma in ents: merged = doc.merge(start, end, tag=label, lemma=lemma, ent_type=label) assert merged != None, (start, end, label, lemma) text = "One test with entities like New York City so the ents list is not void" heads = [1, 11, -1, -1, -1, 1, 1, -3, 4, 2, 1, 1, 0, -1, -2] tokens = en_tokenizer(text) doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads) for span in doc.ents: merged = doc.merge() assert merged != None, (span.start, span.end, span.label_, span.lemma_) def test_spans_entity_merge(en_tokenizer): text = "Stewart Lee is a stand up comedian who lives in England and loves Joe Pasquale.\n" heads = [1, 1, 0, 1, 2, -1, -4, 1, -2, -1, -1, -3, -10, 1, -2, -13, -1] tags = ['NNP', 'NNP', 'VBZ', 'DT', 'VB', 'RP', 'NN', 'WP', 'VBZ', 'IN', 'NNP', 'CC', 'VBZ', 'NNP', 'NNP', '.', 'SP'] ents = [(0, 2, 'PERSON'), (10, 11, 'GPE'), (13, 15, 'PERSON')] tokens = en_tokenizer(text) doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, tags=tags, ents=ents) assert len(doc) == 17 for ent in doc.ents: label, lemma, type_ = (ent.root.tag_, ent.root.lemma_, max(w.ent_type_ for w in ent)) ent.merge(label=label, lemma=lemma, ent_type=type_) # check looping is ok assert len(doc) == 15 def test_spans_entity_merge_iob(): # Test entity IOB stays consistent after merging words = ["a", "b", "c", "d", "e"] doc = Doc(Vocab(), words=words) doc.ents = [(doc.vocab.strings.add('ent-abc'), 0, 3), (doc.vocab.strings.add('ent-d'), 3, 4)] assert doc[0].ent_iob_ == "B" assert doc[1].ent_iob_ == "I" assert doc[2].ent_iob_ == "I" assert doc[3].ent_iob_ == "B" doc[0:1].merge() assert doc[0].ent_iob_ == "B" assert doc[1].ent_iob_ == "I" def test_spans_sentence_update_after_merge(en_tokenizer): text = "Stewart Lee is a stand up comedian. He lives in England and loves Joe Pasquale." heads = [1, 1, 0, 1, 2, -1, -4, -5, 1, 0, -1, -1, -3, -4, 1, -2, -7] deps = ['compound', 'nsubj', 'ROOT', 'det', 'amod', 'prt', 'attr', 'punct', 'nsubj', 'ROOT', 'prep', 'pobj', 'cc', 'conj', 'compound', 'dobj', 'punct'] tokens = en_tokenizer(text) doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps) sent1, sent2 = list(doc.sents) init_len = len(sent1) init_len2 = len(sent2) doc[0:2].merge(label='none', lemma='none', ent_type='none') doc[-2:].merge(label='none', lemma='none', ent_type='none') assert len(sent1) == init_len - 1 assert len(sent2) == init_len2 - 1 def test_spans_subtree_size_check(en_tokenizer): text = "Stewart Lee is a stand up comedian who lives in England and loves Joe Pasquale" heads = [1, 1, 0, 1, 2, -1, -4, 1, -2, -1, -1, -3, -10, 1, -2] deps = ['compound', 'nsubj', 'ROOT', 'det', 'amod', 'prt', 'attr', 'nsubj', 'relcl', 'prep', 'pobj', 'cc', 'conj', 'compound', 'dobj'] tokens = en_tokenizer(text) doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps) sent1 = list(doc.sents)[0] init_len = len(list(sent1.root.subtree)) doc[0:2].merge(label='none', lemma='none', ent_type='none') assert len(list(sent1.root.subtree)) == init_len - 1