=== API === .. autoclass:: spacy.en.English +-----------+----------------------------------------+-------------+--------------------------+ | Attribute | Type | Attr API | NoteS | +===========+========================================+=============+==========================+ | strings | :py:class:`strings.StringStore` | __getitem__ | string <-> int mapping | +-----------+----------------------------------------+-------------+--------------------------+ | vocab | :py:class:`vocab.Vocab` | __getitem__ | Look up Lexeme object | +-----------+----------------------------------------+-------------+--------------------------+ | tokenizer | :py:class:`tokenizer.Tokenizer` | __call__ | Get Tokens given unicode | +-----------+----------------------------------------+-------------+--------------------------+ | tagger | :py:class:`en.pos.EnPosTagger` | __call__ | Set POS tags on Tokens | +-----------+----------------------------------------+-------------+--------------------------+ | parser | :py:class:`syntax.parser.GreedyParser` | __call__ | Set parse on Tokens | +-----------+----------------------------------------+-------------+--------------------------+ .. automethod:: spacy.en.English.__call__ .. autoclass:: spacy.tokens.Tokens :members: +---------------+-------------+-------------+ | Attribute | Type | Useful | +===============+=============+=============+ | vocab | Vocab | __getitem__ | +---------------+-------------+-------------+ | vocab.strings | StringStore | __getitem__ | +---------------+-------------+-------------+ Internals A Tokens instance stores the annotations in a C-array of TokenC structs. Each TokenC struct holds a const pointer to a LexemeC struct, which describes a vocabulary item. The Token objects are built lazily, from this underlying C-data. For faster access, the underlying C data can be accessed from Cython. You can also export the data to a numpy array, via Tokens.to_array, if pure Python access is required, and you need slightly better performance. However, this is both slower and has a worse API than Cython access. .. Once a Token object has been created, it is persisted internally in Tokens._py_tokens. .. autoclass:: spacy.tokens.Token .. automethod:: child +--------------------------------------------------------------------------------+ | **Context-independent Attributes** (calculated once per orth-value in vocab) | +-----------------+-------------+-----------+------------------------------------+ | Attribute | Type | Attribute | Type | +=================+=============+===========+====================================+ | orth/orth\_ | int/unicode | __len__ | int | +-----------------+-------------+-----------+------------------------------------+ | lower/lower\_ | int/unicode | cluster | int | +-----------------+-------------+-----------+------------------------------------+ | norm/norm\_ | int/unicode | prob | float | +-----------------+-------------+-----------+------------------------------------+ | shape/shape\_ | int/unicode | repvec | ndarray(shape=(300,), dtype=float) | +-----------------+-------------+-----------+------------------------------------+ | prefix/prefix\_ | int/unicode | | | +-----------------+-------------+-----------+------------------------------------+ | suffix/suffix\_ | int/unicode | | | +-----------------+-------------+-----------+------------------------------------+ | **Context-dependent Attributes** (calculated once per token in input) | +-----------------+-------------+-----------+------------------------------------+ | Attribute | Type | Attribute | Type | +-----------------+-------------+-----------+------------------------------------+ | whitespace\_ | unicode | string | unicode | +-----------------+-------------+-----------+------------------------------------+ | pos/pos\_ | int/unicode | dep/dep\_ | int/unicode | +-----------------+-------------+-----------+------------------------------------+ | tag/tag\_ | int/unicode | | | +-----------------+-------------+-----------+------------------------------------+ | lemma/lemma\_ | int/unicode | | | +-----------------+-------------+-----------+------------------------------------+ .. py:class:: vocab.Vocab(self, data_dir=None, lex_props_getter=None) .. py:method:: __len__(self) --> int .. py:method:: __getitem__(self, id: int) --> unicode .. py:method:: __getitem__(self, string: unicode) --> int .. py:method:: __setitem__(self, py_str: unicode, props: Dict[str, int[float]) --> None .. py:method:: dump(self, loc: unicode) --> None .. py:method:: load_lexemes(self, loc: unicode) --> None .. py:method:: load_vectors(self, loc: unicode) --> None .. py:class:: strings.StringStore(self) .. py:method:: __len__(self) --> int .. py:method:: __getitem__(self, id: int) --> unicode .. py:method:: __getitem__(self, string: bytes) --> id .. py:method:: __getitem__(self, string: unicode) --> id .. py:method:: dump(self, loc: unicode) --> None .. py:method:: load(self, loc: unicode) --> None .. py:class:: tokenizer.Tokenizer(self, Vocab vocab, rules, prefix_re, suffix_re, infix_re, pos_tags, tag_names) .. py:method:: tokens_from_list(self, List[unicode]) --> spacy.tokens.Tokens .. py:method:: __call__(self, string: unicode) --> spacy.tokens.Tokens) .. py:attribute:: vocab: spacy.vocab.Vocab .. py:class:: en.pos.EnPosTagger(self, strings: spacy.strings.StringStore, data_dir: unicode) .. py:method:: __call__(self, tokens: spacy.tokens.Tokens) .. py:method:: train(self, tokens: spacy.tokens.Tokens, List[int] golds) --> int .. py:method:: load_morph_exceptions(self, exc: Dict[unicode, Dict]) .. py:class:: syntax.parser.GreedyParser(self, model_dir: unicode) .. py:method:: __call__(self, tokens: spacy.tokens.Tokens) --> None .. py:method:: train(self, spacy.tokens.Tokens) --> None