import pytest from thinc.api import Adam, fix_random_seed from spacy import registry from spacy.language import Language from spacy.attrs import NORM from spacy.vocab import Vocab from spacy.training import Example from spacy.tokens import Doc from spacy.pipeline import DependencyParser, EntityRecognizer from spacy.pipeline.ner import DEFAULT_NER_MODEL from spacy.pipeline.dep_parser import DEFAULT_PARSER_MODEL @pytest.fixture def vocab(): return Vocab(lex_attr_getters={NORM: lambda s: s}) @pytest.fixture def parser(vocab): cfg = {"model": DEFAULT_PARSER_MODEL} model = registry.resolve(cfg, validate=True)["model"] parser = DependencyParser(vocab, model) return parser def test_init_parser(parser): pass def _train_parser(parser): fix_random_seed(1) parser.add_label("left") parser.initialize(lambda: [_parser_example(parser)]) sgd = Adam(0.001) for i in range(5): losses = {} doc = Doc(parser.vocab, words=["a", "b", "c", "d"]) gold = {"heads": [1, 1, 3, 3], "deps": ["left", "ROOT", "left", "ROOT"]} example = Example.from_dict(doc, gold) parser.update([example], sgd=sgd, losses=losses) return parser def _parser_example(parser): doc = Doc(parser.vocab, words=["a", "b", "c", "d"]) gold = {"heads": [1, 1, 3, 3], "deps": ["right", "ROOT", "left", "ROOT"]} return Example.from_dict(doc, gold) def _ner_example(ner): doc = Doc( ner.vocab, words=["Joe", "loves", "visiting", "London", "during", "the", "weekend"], ) gold = {"entities": [(0, 3, "PERSON"), (19, 25, "LOC")]} return Example.from_dict(doc, gold) def test_add_label(parser): parser = _train_parser(parser) parser.add_label("right") sgd = Adam(0.001) for i in range(100): losses = {} parser.update([_parser_example(parser)], sgd=sgd, losses=losses) doc = Doc(parser.vocab, words=["a", "b", "c", "d"]) doc = parser(doc) assert doc[0].dep_ == "right" assert doc[2].dep_ == "left" def test_add_label_deserializes_correctly(): cfg = {"model": DEFAULT_NER_MODEL} model = registry.resolve(cfg, validate=True)["model"] ner1 = EntityRecognizer(Vocab(), model) ner1.add_label("C") ner1.add_label("B") ner1.add_label("A") ner1.initialize(lambda: [_ner_example(ner1)]) ner2 = EntityRecognizer(Vocab(), model) # the second model needs to be resized before we can call from_bytes ner2.model.attrs["resize_output"](ner2.model, ner1.moves.n_moves) ner2.from_bytes(ner1.to_bytes()) assert ner1.moves.n_moves == ner2.moves.n_moves for i in range(ner1.moves.n_moves): assert ner1.moves.get_class_name(i) == ner2.moves.get_class_name(i) @pytest.mark.parametrize( "pipe_cls,n_moves,model_config", [ (DependencyParser, 5, DEFAULT_PARSER_MODEL), (EntityRecognizer, 4, DEFAULT_NER_MODEL), ], ) def test_add_label_get_label(pipe_cls, n_moves, model_config): """Test that added labels are returned correctly. This test was added to test for a bug in DependencyParser.labels that'd cause it to fail when splitting the move names. """ labels = ["A", "B", "C"] model = registry.resolve({"model": model_config}, validate=True)["model"] pipe = pipe_cls(Vocab(), model) for label in labels: pipe.add_label(label) assert len(pipe.move_names) == len(labels) * n_moves pipe_labels = sorted(list(pipe.labels)) assert pipe_labels == labels def test_ner_labels_added_implicitly_on_predict(): nlp = Language() ner = nlp.add_pipe("ner") for label in ["A", "B", "C"]: ner.add_label(label) nlp.initialize() doc = Doc(nlp.vocab, words=["hello", "world"], ents=["B-D", "O"]) ner(doc) assert [t.ent_type_ for t in doc] == ["D", ""] assert "D" in ner.labels def test_ner_labels_added_implicitly_on_beam_parse(): nlp = Language() ner = nlp.add_pipe("beam_ner") for label in ["A", "B", "C"]: ner.add_label(label) nlp.initialize() doc = Doc(nlp.vocab, words=["hello", "world"], ents=["B-D", "O"]) ner.beam_parse([doc], beam_width=32) assert "D" in ner.labels def test_ner_labels_added_implicitly_on_greedy_parse(): nlp = Language() ner = nlp.add_pipe("beam_ner") for label in ["A", "B", "C"]: ner.add_label(label) nlp.initialize() doc = Doc(nlp.vocab, words=["hello", "world"], ents=["B-D", "O"]) ner.greedy_parse([doc]) assert "D" in ner.labels def test_ner_labels_added_implicitly_on_update(): nlp = Language() ner = nlp.add_pipe("ner") for label in ["A", "B", "C"]: ner.add_label(label) nlp.initialize() doc = Doc(nlp.vocab, words=["hello", "world"], ents=["B-D", "O"]) example = Example(nlp.make_doc(doc.text), doc) assert "D" not in ner.labels nlp.update([example]) assert "D" in ner.labels