# cython: embedsignature=True from __future__ import unicode_literals from os import path import re from cython.operator cimport dereference as deref from cython.operator cimport preincrement as preinc from cpython cimport Py_UNICODE_ISSPACE from cymem.cymem cimport Pool from preshed.maps cimport PreshMap from .morphology cimport set_morph_from_dict from .strings cimport hash_string cimport cython from . import util from .util import read_lang_data from .tokens.doc cimport Doc cdef class Tokenizer: def __init__(self, Vocab vocab, rules, prefix_re, suffix_re, infix_re): self.mem = Pool() self._cache = PreshMap() self._specials = PreshMap() self._prefix_re = prefix_re self._suffix_re = suffix_re self._infix_re = infix_re self.vocab = vocab self._load_special_tokenization(rules, self.vocab.pos_tags) @classmethod def from_dir(cls, Vocab vocab, data_dir): rules, prefix_re, suffix_re, infix_re = read_lang_data(data_dir) prefix_re = re.compile(prefix_re) suffix_re = re.compile(suffix_re) infix_re = re.compile(infix_re) return cls(vocab, rules, prefix_re, suffix_re, infix_re) cpdef Doc tokens_from_list(self, list strings): cdef Doc tokens = Doc(self.vocab) if sum([len(s) for s in strings]) == 0: return tokens cdef unicode py_string cdef int idx = 0 for i, py_string in enumerate(strings): # Note that we pass tokens.mem here --- the Doc object has ownership tokens.push_back( self.vocab.get(tokens.mem, py_string), True) idx += len(py_string) + 1 return tokens @cython.boundscheck(False) def __call__(self, unicode string): """Tokenize a string. The tokenization rules are defined in three places: * The data//tokenization table, which handles special cases like contractions; * The data//prefix file, used to build a regex to split off prefixes; * The data//suffix file, used to build a regex to split off suffixes. The string is first split on whitespace. To tokenize a whitespace-delimited chunk, we first try to look it up in the special-cases. If it's not found, we split off a prefix, and then try again. If it's still not found, we split off a suffix, and repeat. Args: string (unicode): The string to be tokenized. Returns: tokens (Doc): A Doc object, giving access to a sequence of LexemeCs. """ cdef int length = len(string) cdef Doc tokens = Doc(self.vocab) if length == 0: return tokens cdef int i = 0 cdef int start = 0 cdef bint cache_hit cdef bint in_ws = False cdef unicode span # The task here is much like string.split, but not quite # We find spans of whitespace and non-space characters, and ignore # spans that are exactly ' '. So, our sequences will all be separated # by either ' ' or nothing. for uc in string: if uc.isspace() != in_ws: if start < i: # When we want to make this fast, get the data buffer once # with PyUnicode_AS_DATA, and then maintain a start_byte # and end_byte, so we can call hash64 directly. That way # we don't have to create the slice when we hit the cache. span = string[start:i] key = hash_string(span) cache_hit = self._try_cache(key, tokens) if not cache_hit: self._tokenize(tokens, span, key) in_ws = not in_ws if uc == ' ': tokens.data[tokens.length - 1].spacy = True start = i + 1 else: start = i i += 1 i += 1 if start < i: span = string[start:] key = hash_string(span) cache_hit = self._try_cache(key, tokens) if not cache_hit: self._tokenize(tokens, span, key) tokens.data[tokens.length - 1].spacy = string[-1] == ' ' return tokens cdef int _try_cache(self, hash_t key, Doc tokens) except -1: cached = <_Cached*>self._cache.get(key) if cached == NULL: return False cdef int i if cached.is_lex: for i in range(cached.length): tokens.push_back(cached.data.lexemes[i], False) else: for i in range(cached.length): tokens.push_back(&cached.data.tokens[i], False) return True cdef int _tokenize(self, Doc tokens, unicode span, hash_t orig_key) except -1: cdef vector[LexemeC*] prefixes cdef vector[LexemeC*] suffixes cdef int orig_size orig_size = tokens.length span = self._split_affixes(span, &prefixes, &suffixes) self._attach_tokens(tokens, span, &prefixes, &suffixes) self._save_cached(&tokens.data[orig_size], orig_key, tokens.length - orig_size) cdef unicode _split_affixes(self, unicode string, vector[const LexemeC*] *prefixes, vector[const LexemeC*] *suffixes): cdef size_t i cdef unicode prefix cdef unicode suffix cdef unicode minus_pre cdef unicode minus_suf cdef size_t last_size = 0 while string and len(string) != last_size: last_size = len(string) pre_len = self.find_prefix(string) if pre_len != 0: prefix = string[:pre_len] minus_pre = string[pre_len:] # Check whether we've hit a special-case if minus_pre and self._specials.get(hash_string(minus_pre)) != NULL: string = minus_pre prefixes.push_back(self.vocab.get(self.vocab.mem, prefix)) break suf_len = self.find_suffix(string) if suf_len != 0: suffix = string[-suf_len:] minus_suf = string[:-suf_len] # Check whether we've hit a special-case if minus_suf and (self._specials.get(hash_string(minus_suf)) != NULL): string = minus_suf suffixes.push_back(self.vocab.get(self.vocab.mem, suffix)) break if pre_len and suf_len and (pre_len + suf_len) <= len(string): string = string[pre_len:-suf_len] prefixes.push_back(self.vocab.get(self.vocab.mem, prefix)) suffixes.push_back(self.vocab.get(self.vocab.mem, suffix)) elif pre_len: string = minus_pre prefixes.push_back(self.vocab.get(self.vocab.mem, prefix)) elif suf_len: string = minus_suf suffixes.push_back(self.vocab.get(self.vocab.mem, suffix)) if string and (self._specials.get(hash_string(string)) != NULL): break return string cdef int _attach_tokens(self, Doc tokens, unicode string, vector[const LexemeC*] *prefixes, vector[const LexemeC*] *suffixes) except -1: cdef bint cache_hit cdef int split, end cdef const LexemeC* const* lexemes cdef const LexemeC* lexeme cdef unicode span cdef int i if prefixes.size(): for i in range(prefixes.size()): tokens.push_back(prefixes[0][i], False) if string: cache_hit = self._try_cache(hash_string(string), tokens) if cache_hit: pass else: match = self.find_infix(string) if match is None: tokens.push_back(self.vocab.get(tokens.mem, string), False) else: split = match.start() end = match.end() # Append the beginning, affix, end of the infix span span = string[:split] tokens.push_back(self.vocab.get(tokens.mem, span), False) span = string[split:end] tokens.push_back(self.vocab.get(tokens.mem, span), False) span = string[end:] tokens.push_back(self.vocab.get(tokens.mem, span), False) cdef vector[const LexemeC*].reverse_iterator it = suffixes.rbegin() while it != suffixes.rend(): lexeme = deref(it) preinc(it) tokens.push_back(lexeme, False) cdef int _save_cached(self, const TokenC* tokens, hash_t key, int n) except -1: cdef int i for i in range(n): if tokens[i].lex.id == 0: return 0 cached = <_Cached*>self.mem.alloc(1, sizeof(_Cached)) cached.length = n cached.is_lex = True lexemes = self.mem.alloc(n, sizeof(LexemeC**)) for i in range(n): lexemes[i] = tokens[i].lex cached.data.lexemes = lexemes self._cache.set(key, cached) def find_infix(self, unicode string): return self._infix_re.search(string) def find_prefix(self, unicode string): match = self._prefix_re.search(string) return (match.end() - match.start()) if match is not None else 0 def find_suffix(self, unicode string): match = self._suffix_re.search(string) return (match.end() - match.start()) if match is not None else 0 def _load_special_tokenization(self, object rules, object tag_map): '''Add a special-case tokenization rule. ''' cdef int i cdef list substrings cdef unicode chunk cdef unicode form cdef unicode lemma cdef dict props cdef LexemeC** lexemes cdef hash_t hashed for chunk, substrings in sorted(rules.items()): tokens = self.mem.alloc(len(substrings) + 1, sizeof(TokenC)) for i, props in enumerate(substrings): form = props['F'] lemma = props.get("L", None) tokens[i].lex = self.vocab.get(self.vocab.mem, form) if lemma is not None: tokens[i].lemma = self.vocab.strings[lemma] else: tokens[i].lemma = 0 if 'pos' in props: tokens[i].tag = self.vocab.strings[props['pos']] tokens[i].pos = tag_map[props['pos']][0] # These are defaults, which can be over-ridden by the # token-specific props. set_morph_from_dict(&tokens[i].morph, tag_map[props['pos']][1]) if tokens[i].lemma == 0: tokens[i].lemma = tokens[i].lex.orth set_morph_from_dict(&tokens[i].morph, props) cached = <_Cached*>self.mem.alloc(1, sizeof(_Cached)) cached.length = len(substrings) cached.is_lex = False cached.data.tokens = tokens hashed = hash_string(chunk) self._specials.set(hashed, cached) self._cache.set(hashed, cached)