# coding: utf-8 from __future__ import unicode_literals import pytest from spacy.vocab import Vocab from spacy.language import Language from spacy.tokens import Doc from spacy.gold import GoldParse @pytest.fixture def nlp(): nlp = Language(Vocab()) textcat = nlp.create_pipe("textcat") for label in ("POSITIVE", "NEGATIVE"): textcat.add_label(label) nlp.add_pipe(textcat) nlp.begin_training() return nlp def test_language_update(nlp): text = "hello world" annots = {"cats": {"POSITIVE": 1.0, "NEGATIVE": 0.0}} doc = Doc(nlp.vocab, words=text.split(" ")) gold = GoldParse(doc, **annots) # Update with doc and gold objects nlp.update([doc], [gold]) # Update with text and dict nlp.update([text], [annots]) # Update with doc object and dict nlp.update([doc], [annots]) # Update with text and gold object nlp.update([text], [gold]) # Update badly with pytest.raises(IndexError): nlp.update([doc], []) with pytest.raises(IndexError): nlp.update([], [gold]) def test_language_evaluate(nlp): text = "hello world" annots = {"cats": {"POSITIVE": 1.0, "NEGATIVE": 0.0}} doc = Doc(nlp.vocab, words=text.split(" ")) gold = GoldParse(doc, **annots) # Evaluate with doc and gold objects nlp.evaluate([(doc, gold)]) # Evaluate with text and dict nlp.evaluate([(text, annots)]) # Evaluate with doc object and dict nlp.evaluate([(doc, annots)]) # Evaluate with text and gold object nlp.evaluate([(text, gold)]) # Evaluate badly with pytest.raises(Exception): nlp.evaluate([text, gold])