//- 💫 DOCS > USAGE > LINGUISTIC FEATURES > NAMED ENTITY RECOGNITION

p
    |  spaCy features an extremely fast statistical entity recognition system,
    |  that assigns labels to contiguous spans of tokens. The default model
    |  identifies a variety of named and numeric entities, including companies,
    |  locations, organizations and products. You can add arbitrary classes to
    |  the entity recognition system, and update the model with new examples.

+h(3, "101") Named Entity Recognition 101

include ../_spacy-101/_named-entities

+h(3, "accessing") Accessing entity annotations

p
    |  The standard way to access entity annotations is the
    |  #[+api("doc#ents") #[code doc.ents]] property, which produces a sequence
    |  of #[+api("span") #[code Span]] objects. The entity type is accessible
    |  either as a hash value or as a string, using the attributes
    |  #[code ent.label] and #[code ent.label_]. The #[code Span] object acts
    |  as a sequence of tokens, so you can iterate over the entity or index into
    |  it. You can also get the text form of the whole entity, as though it were
    |  a single token.

p
    |  You can also access token entity annotations using the
    |  #[+api("token#attributes") #[code token.ent_iob]] and
    |  #[+api("token#attributes") #[code token.ent_type]] attributes.
    |  #[code token.ent_iob] indicates whether an entity starts, continues or
    |  ends on the tag. If no entity type is set on a token, it will return an
    |  empty string.

+aside("IOB Scheme")
    |  #[code I] – Token is inside an entity.#[br]
    |  #[code O] – Token is outside an entity.#[br]
    |  #[code B] – Token is the beginning of an entity.#[br]

+code("Example").
    doc = nlp(u'San Francisco considers banning sidewalk delivery robots')

    # document level
    ents = [(e.text, e.start_char, e.end_char, e.label_) for e in doc.ents]
    assert ents == [(u'San Francisco', 0, 13, u'GPE')]

    # token level
    ent_san = [doc[0].text, doc[0].ent_iob_, doc[0].ent_type_]
    ent_francisco = [doc[1].text, doc[1].ent_iob_, doc[1].ent_type_]
    assert ent_san == [u'San', u'B', u'GPE']
    assert ent_francisco == [u'Francisco', u'I', u'GPE']

+table(["Text", "ent_iob", "ent_iob_", "ent_type_", "Description"])
    - var style = [0, 1, 1, 1, 0]
    +annotation-row(["San", 3, "B", "GPE", "beginning of an entity"], style)
    +annotation-row(["Francisco", 1, "I", "GPE", "inside an entity"], style)
    +annotation-row(["considers", 2, "O", '""', "outside an entity"], style)
    +annotation-row(["banning", 2, "O", '""', "outside an entity"], style)
    +annotation-row(["sidewalk", 2, "O", '""', "outside an entity"], style)
    +annotation-row(["delivery", 2, "O", '""', "outside an entity"], style)
    +annotation-row(["robots", 2, "O", '""', "outside an entity"], style)

+h(3, "setting-entities") Setting entity annotations

p
    |  To ensure that the sequence of token annotations remains consistent, you
    |  have to set entity annotations #[strong at the document level]. However,
    |  you can't write directly to the #[code token.ent_iob] or
    |  #[code token.ent_type] attributes, so the easiest way to set entities is
    |  to assign to the #[+api("doc#ents") #[code doc.ents]] attribute
    |  and create the new entity as a #[+api("span") #[code Span]].

+code("Example").
    from spacy.tokens import Span

    doc = nlp(u'Netflix is hiring a new VP of global policy')
    # the model didn't recognise any entities :(

    ORG = doc.vocab.strings[u'ORG'] # get hash value of entity label
    netflix_ent = Span(doc, 0, 1, label=ORG) # create a Span for the new entity
    doc.ents = [netflix_ent]

    ents = [(e.text, e.start_char, e.end_char, e.label_) for e in doc.ents]
    assert ents = [(u'Netflix', 0, 7, u'ORG')]

p
    |  Keep in mind that you need to create a #[code Span] with the start and
    |  end index of the #[strong token], not the start and end index of the
    |  entity in the document. In this case, "Netflix" is token #[code (0, 1)] –
    |  but at the document level, the entity will have the start and end
    |  indices #[code (0, 7)].

+h(4, "setting-from-array") Setting entity annotations from array

p
    |  You can also assign entity annotations using the
    |  #[+api("doc#from_array") #[code doc.from_array()]] method. To do this,
    |  you should include both the #[code ENT_TYPE] and the #[code ENT_IOB]
    |  attributes in the array you're importing from.

+code.
    import numpy
    from spacy.attrs import ENT_IOB, ENT_TYPE

    doc = nlp.make_doc(u'London is a big city in the United Kingdom.')
    assert list(doc.ents) == []

    header = [ENT_IOB, ENT_TYPE]
    attr_array = numpy.zeros((len(doc), len(header)))
    attr_array[0, 0] = 2 # B
    attr_array[0, 1] = doc.vocab.strings[u'GPE']
    doc.from_array(header, attr_array)
    assert list(doc.ents)[0].text == u'London'

+h(4, "setting-cython") Setting entity annotations in Cython

p
    |  Finally, you can always write to the underlying struct, if you compile
    |  a #[+a("http://cython.org/") Cython] function. This is easy to do, and
    |  allows you to write efficient native code.

+code.
    # cython: infer_types=True
    from spacy.tokens.doc cimport Doc

    cpdef set_entity(Doc doc, int start, int end, int ent_type):
        for i in range(start, end):
            doc.c[i].ent_type = ent_type
        doc.c[start].ent_iob = 3
        for i in range(start+1, end):
            doc.c[i].ent_iob = 2

p
    |  Obviously, if you write directly to the array of #[code TokenC*] structs,
    |  you'll have responsibility for ensuring that the data is left in a
    |  consistent state.

+h(3, "entity-types") Built-in entity types

+aside("Tip: Understanding entity types")
    |  You can also use #[code spacy.explain()] to get the description for the
    |  string representation of an entity label. For example,
    |  #[code spacy.explain("LANGUAGE")] will return "any named language".

include ../../api/_annotation/_named-entities

+h(3, "updating") Training and updating

p
    |  To provide training examples to the entity recogniser, you'll first need
    |  to create an instance of the #[+api("goldparse") #[code GoldParse]] class.
    |  You can specify your annotations in a stand-off format or as token tags.
    |  If a character offset in your entity annotations don't fall on a token
    |  boundary, the #[code GoldParse] class will treat that annotation as a
    |  missing value.  This allows for more realistic training, because the
    |  entity recogniser is allowed to learn from examples that may feature
    |  tokenizer errors.

+code.
    train_data = [('Who is Chaka Khan?', [(7, 17, 'PERSON')]),
                  ('I like London and Berlin.', [(7, 13, 'LOC'), (18, 24, 'LOC')])]

+code.
    doc = Doc(nlp.vocab, [u'rats', u'make', u'good', u'pets'])
    gold = GoldParse(doc, entities=[u'U-ANIMAL', u'O', u'O', u'O'])

+infobox
    |  For more details on #[strong training and updating] the named entity
    |  recognizer, see the usage guides on #[+a("/usage/training") training]
    |  or check out the runnable
    |  #[+src(gh("spaCy", "examples/training/train_ner.py")) training script]
    |  on GitHub.

+h(4, "updating-biluo") The BILUO Scheme

p
    |  You can also provide token-level entity annotation, using the
    |  following tagging scheme to describe the entity boundaries:

include ../../api/_annotation/_biluo

+h(3, "displacy") Visualizing named entities

p
    |  The #[+a(DEMOS_URL + "/displacy-ent/") displaCy #[sup ENT] visualizer]
    |  lets you explore an entity recognition model's behaviour interactively.
    |  If you're training a model, it's very useful to run the visualization
    |  yourself. To help you do that, spaCy v2.0+ comes with a visualization
    |  module. Simply pass a #[code Doc] or a list of #[code Doc] objects to
    |  displaCy and run #[+api("top-level#displacy.serve") #[code displacy.serve]] to
    |  run the web server, or #[+api("top-level#displacy.render") #[code displacy.render]]
    |  to generate the raw markup.

p
    |  For more details and examples, see the
    |  #[+a("/usage/visualizers") usage guide on visualizing spaCy].

+code("Named Entity example").
    import spacy
    from spacy import displacy

    text = """But Google is starting from behind. The company made a late push
    into hardware, and Apple’s Siri, available on iPhones, and Amazon’s Alexa
    software, which runs on its Echo and Dot devices, have clear leads in
    consumer adoption."""

    nlp = spacy.load('custom_ner_model')
    doc = nlp(text)
    displacy.serve(doc, style='ent')

+codepen("a73f8b68f9af3157855962b283b364e4", 345)