""" MALT-style dependency parser """ from __future__ import unicode_literals cimport cython from cpython.ref cimport PyObject, Py_INCREF, Py_XDECREF from libc.stdint cimport uint32_t, uint64_t from libc.string cimport memset, memcpy import random import os.path from os import path import shutil import json import sys from cymem.cymem cimport Pool, Address from murmurhash.mrmr cimport hash64 from thinc.typedefs cimport weight_t, class_t, feat_t, atom_t, hash_t from util import Config from thinc.api cimport Example, ExampleC from ..structs cimport TokenC from ..tokens.doc cimport Doc from ..strings cimport StringStore from .transition_system import OracleError from .transition_system cimport TransitionSystem, Transition from ..gold cimport GoldParse from . import _parse_features from ._parse_features cimport CONTEXT_SIZE from ._parse_features cimport fill_context from .stateclass cimport StateClass from thinc.learner cimport arg_max_if_true DEBUG = False def set_debug(val): global DEBUG DEBUG = val def get_templates(name): pf = _parse_features if name == 'ner': return pf.ner elif name == 'debug': return pf.unigrams elif name.startswith('embed'): return (pf.words, pf.tags, pf.labels) else: return (pf.unigrams + pf.s0_n0 + pf.s1_n0 + pf.s1_s0 + pf.s0_n1 + pf.n0_n1 + \ pf.tree_shape + pf.trigrams) def ParserFactory(transition_system): return lambda strings, dir_: Parser(strings, dir_, transition_system) cdef class Parser: def __init__(self, StringStore strings, transition_system, model): self.moves = transition_system self.model = model @classmethod def from_dir(cls, model_dir, strings, transition_system): if not os.path.exists(model_dir): print >> sys.stderr, "Warning: No model found at", model_dir elif not os.path.isdir(model_dir): print >> sys.stderr, "Warning: model path:", model_dir, "is not a directory" cfg = Config.read(model_dir, 'config') moves = transition_system(strings, cfg.labels) templates = get_templates(cfg.features) model = Model(moves.n_moves, templates, model_dir) return cls(strings, moves, model) def __call__(self, Doc tokens): cdef StateClass stcls = StateClass.init(tokens.c, tokens.length) self.moves.initialize_state(stcls) cdef Example eg = Example(self.model.n_classes, CONTEXT_SIZE, self.model.n_feats, self.model.n_feats) self.parse(stcls, eg.c) tokens.set_parse(stcls._sent) def __reduce__(self): return (Parser, (self.moves.strings, self.moves, self.model), None, None) cdef void predict(self, StateClass stcls, ExampleC* eg) nogil: memset(eg.scores, 0, eg.nr_class * sizeof(weight_t)) self.moves.set_valid(eg.is_valid, stcls) fill_context(eg.atoms, stcls) self.model.set_scores(eg.scores, eg.atoms) eg.guess = arg_max_if_true(eg.scores, eg.is_valid, self.model.n_classes) cdef void parse(self, StateClass stcls, ExampleC eg) nogil: while not stcls.is_final(): self.predict(stcls, &eg) if not eg.is_valid[eg.guess]: break self.moves.c[eg.guess].do(stcls, self.moves.c[eg.guess].label) self.moves.finalize_state(stcls) def train(self, Doc tokens, GoldParse gold): self.moves.preprocess_gold(gold) cdef StateClass stcls = StateClass.init(tokens.c, tokens.length) self.moves.initialize_state(stcls) cdef Example eg = Example(self.model.n_classes, CONTEXT_SIZE, self.model.n_feats, self.model.n_feats) cdef weight_t loss = 0 words = [w.orth_ for w in tokens] cdef Transition G while not stcls.is_final(): memset(eg.c.scores, 0, eg.c.nr_class * sizeof(weight_t)) self.moves.set_costs(eg.c.is_valid, eg.c.costs, stcls, gold) fill_context(eg.c.atoms, stcls) self.model.train(eg) G = self.moves.c[eg.c.guess] self.moves.c[eg.c.guess].do(stcls, self.moves.c[eg.c.guess].label) loss += eg.c.loss return loss def step_through(self, Doc doc): return StepwiseState(self, doc) cdef class StepwiseState: cdef readonly StateClass stcls cdef readonly Example eg cdef readonly Doc doc cdef readonly Parser parser def __init__(self, Parser parser, Doc doc): self.parser = parser self.doc = doc self.stcls = StateClass.init(doc.c, doc.length) self.parser.moves.initialize_state(self.stcls) self.eg = Example(self.parser.model.n_classes, CONTEXT_SIZE, self.parser.model.n_feats, self.parser.model.n_feats) def __enter__(self): return self def __exit__(self, type, value, traceback): self.finish() @property def is_final(self): return self.stcls.is_final() @property def stack(self): return self.stcls.stack @property def queue(self): return self.stcls.queue @property def heads(self): return [self.stcls.H(i) for i in range(self.stcls.length)] @property def deps(self): return [self.doc.vocab.strings[self.stcls._sent[i].dep] for i in range(self.stcls.length)] def predict(self): self.parser.predict(self.stcls, &self.eg.c) action = self.parser.moves.c[self.eg.c.guess] return self.parser.moves.move_name(action.move, action.label) def transition(self, action_name): moves = {'S': 0, 'D': 1, 'L': 2, 'R': 3} if action_name == '_': action_name = self.predict() action = self.parser.moves.lookup_transition(action_name) elif action_name == 'L' or action_name == 'R': self.predict() move = moves[action_name] clas = _arg_max_clas(self.eg.c.scores, move, self.parser.moves.c, self.eg.c.nr_class) action = self.parser.moves.c[clas] else: action = self.parser.moves.lookup_transition(action_name) action.do(self.stcls, action.label) def finish(self): if self.stcls.is_final(): self.parser.moves.finalize_state(self.stcls) self.doc.set_parse(self.stcls._sent) cdef int _arg_max_clas(const weight_t* scores, int move, const Transition* actions, int nr_class) except -1: cdef weight_t score = 0 cdef int mode = -1 cdef int i for i in range(nr_class): if actions[i].move == move and (mode == -1 or scores[i] >= score): mode = i score = scores[i] return mode