# cython: profile=True from __future__ import unicode_literals from ._state cimport State from ._state cimport has_head, get_idx, get_s0, get_n0, get_left, get_right from ._state cimport is_final, at_eol, pop_stack, push_stack, add_dep from ._state cimport head_in_buffer, children_in_buffer from ._state cimport head_in_stack, children_in_stack from ._state cimport count_left_kids from ..structs cimport TokenC from .transition_system cimport do_func_t, get_cost_func_t from ..gold cimport GoldParse from ..gold cimport GoldParseC DEF NON_MONOTONIC = True DEF USE_BREAK = True cdef weight_t MIN_SCORE = -90000 # Break transition from here # http://www.aclweb.org/anthology/P13-1074 cdef enum: SHIFT REDUCE LEFT RIGHT BREAK CONSTITUENT ADJUST N_MOVES MOVE_NAMES = [None] * N_MOVES MOVE_NAMES[SHIFT] = 'S' MOVE_NAMES[REDUCE] = 'D' MOVE_NAMES[LEFT] = 'L' MOVE_NAMES[RIGHT] = 'R' MOVE_NAMES[BREAK] = 'B' MOVE_NAMES[CONSTITUENT] = 'C' MOVE_NAMES[ADJUST] = 'A' cdef class Shift: @staticmethod cdef bint is_valid(const State* s, int label) except -1: return not at_eol(s) @staticmethod cdef int transition(State* state, int label) except -1: # Set the dep label, in case we need it after we reduce if NON_MONOTONIC: state.sent[state.i].dep = label push_stack(state) @staticmethod cdef int cost(const State* s, const GoldParseC* gold, int label) except -1: if not Shift.is_valid(s, label): return 9000 cost = 0 cost += head_in_stack(s, s.i, gold.heads) cost += children_in_stack(s, s.i, gold.heads) # If we can break, and there's no cost to doing so, we should if Break.is_valid(s, label) and Break.cost(s, gold, -1) == 0: cost += 1 return cost cdef class Reduce: @staticmethod cdef bint is_valid(const State* s, int label) except -1: if NON_MONOTONIC: return s.stack_len >= 2 #and not missing_brackets(s) else: return s.stack_len >= 2 and has_head(get_s0(s)) @staticmethod cdef int transition(State* state, int label) except -1: if NON_MONOTONIC and not has_head(get_s0(state)): add_dep(state, state.stack[-1], state.stack[0], get_s0(state).dep) pop_stack(state) @staticmethod cdef int cost(const State* s, const GoldParseC* gold, int label) except -1: if not Reduce.is_valid(s, label): return 9000 cdef int cost = 0 cost += children_in_buffer(s, s.stack[0], gold.heads) if NON_MONOTONIC: cost += head_in_buffer(s, s.stack[0], gold.heads) return cost cdef class LeftArc: @staticmethod cdef bint is_valid(const State* s, int label) except -1: if NON_MONOTONIC: return s.stack_len >= 1 #and not missing_brackets(s) else: return s.stack_len >= 1 and not has_head(get_s0(s)) @staticmethod cdef int transition(State* state, int label) except -1: # Interpret left-arcs from EOL as attachment to root if at_eol(state): add_dep(state, state.stack[0], state.stack[0], label) else: add_dep(state, state.i, state.stack[0], label) pop_stack(state) @staticmethod cdef int cost(const State* s, const GoldParseC* gold, int label) except -1: if not LeftArc.is_valid(s, label): return 9000 cdef int cost = 0 if gold.heads[s.stack[0]] == s.i: cost += label != -1 and label != gold.labels[s.stack[0]] return cost # If we're at EOL, then the left arc will add an arc to ROOT. elif at_eol(s): # Are we root? if gold.labels[s.stack[0]] != -1: # If we're at EOL, prefer to reduce or break over left-arc if Reduce.is_valid(s, -1) or Break.is_valid(s, -1): cost += gold.heads[s.stack[0]] != s.stack[0] # Are we labelling correctly? cost += label != -1 and label != gold.labels[s.stack[0]] return cost cost += head_in_buffer(s, s.stack[0], gold.heads) cost += children_in_buffer(s, s.stack[0], gold.heads) if NON_MONOTONIC and s.stack_len >= 2: cost += gold.heads[s.stack[0]] == s.stack[-1] if gold.labels[s.stack[0]] != -1: cost += gold.heads[s.stack[0]] == s.stack[0] return cost cdef class RightArc: @staticmethod cdef bint is_valid(const State* s, int label) except -1: return s.stack_len >= 1 and not at_eol(s) @staticmethod cdef int transition(State* state, int label) except -1: add_dep(state, state.stack[0], state.i, label) push_stack(state) @staticmethod cdef int cost(const State* s, const GoldParseC* gold, int label) except -1: if not RightArc.is_valid(s, label): return 9000 cdef int cost cost = 0 if gold.heads[s.i] == s.stack[0]: cost += label != -1 and label != gold.labels[s.i] return cost # This indicates missing head if gold.labels[s.i] != -1: cost += head_in_buffer(s, s.i, gold.heads) cost += children_in_stack(s, s.i, gold.heads) cost += head_in_stack(s, s.i, gold.heads) return cost cdef class Break: @staticmethod cdef bint is_valid(const State* s, int label) except -1: cdef int i if not USE_BREAK: return False elif at_eol(s): return False #elif NON_MONOTONIC: # return True else: # In the Break transition paper, they have this constraint that prevents # Break if stack is disconnected. But, if we're doing non-monotonic parsing, # we prefer to relax this constraint. This is helpful in parsing whole # documents, because then we don't get stuck with words on the stack. seen_headless = False for i in range(s.stack_len): if s.sent[s.stack[-i]].head == 0: if seen_headless: return False else: seen_headless = True # TODO: Constituency constraints return True @staticmethod cdef int transition(State* state, int label) except -1: state.sent[state.i-1].sent_end = True while state.stack_len != 0: if get_s0(state).head == 0: get_s0(state).dep = label state.stack -= 1 state.stack_len -= 1 if not at_eol(state): push_stack(state) @staticmethod cdef int cost(const State* s, const GoldParseC* gold, int label) except -1: if not Break.is_valid(s, label): return 9000 # When we break, we Reduce all of the words on the stack. cdef int cost = 0 # Number of deps between S0...Sn and N0...Nn for i in range(s.i, s.sent_len): cost += children_in_stack(s, i, gold.heads) cost += head_in_stack(s, i, gold.heads) return cost cdef class Constituent: @staticmethod cdef bint is_valid(const State* s, int label) except -1: if s.stack_len < 1: return False return False #else: # # If all stack elements are popped, can't constituent # for i in range(s.ctnts.stack_len): # if not s.ctnts.is_popped[-i]: # return True # else: # return False @staticmethod cdef int transition(State* state, int label) except -1: return False #cdef Constituent* bracket = new_bracket(state.ctnts) #bracket.parent = NULL #bracket.label = self.label #bracket.head = get_s0(state) #bracket.length = 0 #attach(bracket, state.ctnts.stack) # Attach rightward children. They're in the brackets array somewhere # between here and B0. #cdef Constituent* node #cdef const TokenC* node_gov #for i in range(1, bracket - state.ctnts.stack): # node = bracket - i # node_gov = node.head + node.head.head # if node_gov == bracket.head: # attach(bracket, node) @staticmethod cdef int cost(const State* s, const GoldParseC* gold, int label) except -1: if not Constituent.is_valid(s, label): return 9000 raise Exception("Constituent move should be disabled currently") # The gold standard is indexed by end, then by start, then a set of labels #brackets = gold.brackets(get_s0(s).r_edge, {}) #if not brackets: # return 2 # 2 loss for bad bracket, only 1 for good bracket bad label # Index the current brackets in the state #existing = set() #for i in range(s.ctnt_len): # if ctnt.end == s.r_edge and ctnt.label == self.label: # existing.add(ctnt.start) #cdef int loss = 2 #cdef const TokenC* child #cdef const TokenC* s0 = get_s0(s) #cdef int n_left = count_left_kids(s0) # Iterate over the possible start positions, and check whether we have a # (start, end, label) match to the gold tree #for i in range(1, n_left): # child = get_left(s, s0, i) # if child.l_edge in brackets and child.l_edge not in existing: # if self.label in brackets[child.l_edge] # return 0 # else: # loss = 1 # If we see the start position, set loss to 1 #return loss cdef class Adjust: @staticmethod cdef bint is_valid(const State* s, int label) except -1: return False #if s.ctnts.stack_len < 2: # return False #cdef const Constituent* b1 = s.ctnts.stack[-1] #cdef const Constituent* b0 = s.ctnts.stack[0] #if (b1.head + b1.head.head) != b0.head: # return False #elif b0.head >= b1.head: # return False #elif b0 >= b1: # return False @staticmethod cdef int transition(State* state, int label) except -1: return False #cdef Constituent* b0 = state.ctnts.stack[0] #cdef Constituent* b1 = state.ctnts.stack[1] #assert (b1.head + b1.head.head) == b0.head #assert b0.head < b1.head #assert b0 < b1 #attach(b0, b1) ## Pop B1 from stack, but keep B0 on top #state.ctnts.stack -= 1 #state.ctnts.stack[0] = b0 @staticmethod cdef int cost(const State* s, const GoldParseC* gold, int label) except -1: if not Adjust.is_valid(s, label): return 9000 raise Exception("Adjust move should be disabled currently") # The gold standard is indexed by end, then by start, then a set of labels #gold_starts = gold.brackets(get_s0(s).r_edge, {}) # Case 1: There are 0 brackets ending at this word. # --> Cost is sunk, but must allow brackets to begin #if not gold_starts: # return 0 # Is the top bracket correct? #gold_labels = gold_starts.get(s.ctnt.start, set()) # TODO: Case where we have a unary rule # TODO: Case where two brackets end on this word, with top bracket starting # before #cdef const TokenC* child #cdef const TokenC* s0 = get_s0(s) #cdef int n_left = count_left_kids(s0) #cdef int i # Iterate over the possible start positions, and check whether we have a # (start, end, label) match to the gold tree #for i in range(1, n_left): # child = get_left(s, s0, i) # if child.l_edge in brackets: # if self.label in brackets[child.l_edge]: # return 0 # else: # loss = 1 # If we see the start position, set loss to 1 #return loss cdef class ArcEager(TransitionSystem): @classmethod def get_labels(cls, gold_parses): move_labels = {SHIFT: {'': True}, REDUCE: {'': True}, RIGHT: {}, LEFT: {'ROOT': True}, BREAK: {'ROOT': True}, CONSTITUENT: {}, ADJUST: {'': True}} for raw_text, sents in gold_parses: for (ids, words, tags, heads, labels, iob), ctnts in sents: for child, head, label in zip(ids, heads, labels): if label != 'ROOT': if head < child: move_labels[RIGHT][label] = True elif head > child: move_labels[LEFT][label] = True for start, end, label in ctnts: move_labels[CONSTITUENT][label] = True return move_labels cdef int preprocess_gold(self, GoldParse gold) except -1: for i in range(gold.length): if gold.heads[i] is None: # Missing values gold.c.heads[i] = i gold.c.labels[i] = -1 else: gold.c.heads[i] = gold.heads[i] gold.c.labels[i] = self.strings[gold.labels[i]] for end, brackets in gold.brackets.items(): for start, label_strs in brackets.items(): gold.c.brackets[start][end] = 1 for label_str in label_strs: # Add the encoded label to the set gold.brackets[end][start].add(self.strings[label_str]) cdef Transition lookup_transition(self, object name) except *: if '-' in name: move_str, label_str = name.split('-', 1) label = self.label_ids[label_str] else: label = 0 move = MOVE_NAMES.index(move_str) for i in range(self.n_moves): if self.c[i].move == move and self.c[i].label == label: return self.c[i] def move_name(self, int move, int label): label_str = self.strings[label] if label_str: return MOVE_NAMES[move] + '-' + label_str else: return MOVE_NAMES[move] cdef Transition init_transition(self, int clas, int move, int label) except *: # TODO: Apparent Cython bug here when we try to use the Transition() # constructor with the function pointers cdef Transition t t.score = 0 t.clas = clas t.move = move t.label = label if move == SHIFT: t.is_valid = Shift.is_valid t.do = Shift.transition t.get_cost = Shift.cost elif move == REDUCE: t.is_valid = Reduce.is_valid t.do = Reduce.transition t.get_cost = Reduce.cost elif move == LEFT: t.is_valid = LeftArc.is_valid t.do = LeftArc.transition t.get_cost = LeftArc.cost elif move == RIGHT: t.is_valid = RightArc.is_valid t.do = RightArc.transition t.get_cost = RightArc.cost elif move == BREAK: t.is_valid = Break.is_valid t.do = Break.transition t.get_cost = Break.cost elif move == CONSTITUENT: t.is_valid = Constituent.is_valid t.do = Constituent.transition t.get_cost = Constituent.cost elif move == ADJUST: t.is_valid = Adjust.is_valid t.do = Adjust.transition t.get_cost = Adjust.cost else: raise Exception(move) return t cdef int initialize_state(self, State* state) except -1: push_stack(state) cdef int finalize_state(self, State* state) except -1: cdef int root_label = self.strings['ROOT'] for i in range(state.sent_len): if state.sent[i].head == 0 and state.sent[i].dep == 0: state.sent[i].dep = root_label cdef int set_valid(self, bint* output, const State* state) except -1: cdef bint[N_MOVES] is_valid is_valid[SHIFT] = Shift.is_valid(state, -1) is_valid[REDUCE] = Reduce.is_valid(state, -1) is_valid[LEFT] = LeftArc.is_valid(state, -1) is_valid[RIGHT] = RightArc.is_valid(state, -1) is_valid[BREAK] = Break.is_valid(state, -1) is_valid[CONSTITUENT] = Constituent.is_valid(state, -1) is_valid[ADJUST] = Adjust.is_valid(state, -1) cdef int i for i in range(self.n_moves): output[i] = is_valid[self.c[i].move] cdef int set_costs(self, int* output, const State* s, GoldParse gold) except -1: cdef Transition move move.label = -1 cdef int[N_MOVES] move_costs move_costs[SHIFT] = Shift.cost(s, &gold.c, -1) move_costs[REDUCE] = Reduce.cost(s, &gold.c, -1) move_costs[LEFT] = LeftArc.cost(s, &gold.c, -1) move_costs[RIGHT] = RightArc.cost(s, &gold.c, -1) move_costs[BREAK] = Break.cost(s, &gold.c, -1) move_costs[CONSTITUENT] = Constituent.cost(s, &gold.c, -1) move_costs[ADJUST] = Adjust.cost(s, &gold.c, -1) cdef int i, label cdef int* labels = gold.c.labels cdef int* heads = gold.c.heads for i in range(self.n_moves): move = self.c[i] output[i] = move_costs[move.move] if output[i] == 0: label = -1 if move.move == RIGHT and heads[s.i] == s.stack[0]: label = labels[s.i] if move.move == LEFT and heads[s.stack[0]] == s.i: label = labels[s.stack[0]] elif move.move == LEFT and at_eol(s) and (Reduce.is_valid(s, -1) or Break.is_valid(s, 1)): label = labels[s.stack[0]] output[i] += move.label != label and label != -1 cdef Transition best_valid(self, const weight_t* scores, const State* s) except *: cdef bint[N_MOVES] is_valid is_valid[SHIFT] = Shift.is_valid(s, -1) is_valid[REDUCE] = Reduce.is_valid(s, -1) is_valid[LEFT] = LeftArc.is_valid(s, -1) is_valid[RIGHT] = RightArc.is_valid(s, -1) is_valid[BREAK] = Break.is_valid(s, -1) is_valid[CONSTITUENT] = Constituent.is_valid(s, -1) is_valid[ADJUST] = Adjust.is_valid(s, -1) cdef Transition best cdef weight_t score = MIN_SCORE cdef int i for i in range(self.n_moves): if scores[i] > score and is_valid[self.c[i].move]: best = self.c[i] score = scores[i] assert best.clas < self.n_moves assert score > MIN_SCORE # Label Shift moves with the best Right-Arc label, for non-monotonic # actions if best.move == SHIFT: score = MIN_SCORE for i in range(self.n_moves): if self.c[i].move == RIGHT and scores[i] > score: best.label = self.c[i].label score = scores[i] return best