from typing import cast import pytest from numpy.testing import assert_equal from spacy.attrs import SENT_START from spacy import util from spacy.training import Example from spacy.lang.en import English from spacy.language import Language from spacy.pipeline import TrainablePipe from spacy.tests.util import make_tempdir def test_is_distillable(): nlp = English() senter = nlp.add_pipe("senter") assert senter.is_distillable def test_label_types(): nlp = Language() senter = nlp.add_pipe("senter") with pytest.raises(NotImplementedError): senter.add_label("A") SENT_STARTS = [0] * 14 SENT_STARTS[0] = 1 SENT_STARTS[5] = 1 SENT_STARTS[9] = 1 TRAIN_DATA = [ ( "I like green eggs. Eat blue ham. I like purple eggs.", {"sent_starts": SENT_STARTS}, ), ( "She likes purple eggs. They hate ham. You like yellow eggs.", {"sent_starts": SENT_STARTS}, ), ] def test_initialize_examples(): nlp = Language() nlp.add_pipe("senter") train_examples = [] for t in TRAIN_DATA: train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1])) # you shouldn't really call this more than once, but for testing it should be fine nlp.initialize() nlp.initialize(get_examples=lambda: train_examples) with pytest.raises(TypeError): nlp.initialize(get_examples=lambda: None) with pytest.raises(TypeError): nlp.initialize(get_examples=train_examples) def test_overfitting_IO(): # Simple test to try and quickly overfit the senter - ensuring the ML models work correctly nlp = English() train_examples = [] for t in TRAIN_DATA: train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1])) # add some cases where SENT_START == -1 train_examples[0].reference[10].is_sent_start = False train_examples[1].reference[1].is_sent_start = False train_examples[1].reference[11].is_sent_start = False nlp.add_pipe("senter") optimizer = nlp.initialize() for i in range(200): losses = {} nlp.update(train_examples, sgd=optimizer, losses=losses) assert losses["senter"] < 0.001 # test the trained model test_text = TRAIN_DATA[0][0] doc = nlp(test_text) gold_sent_starts = [0] * 14 gold_sent_starts[0] = 1 gold_sent_starts[5] = 1 gold_sent_starts[9] = 1 assert [int(t.is_sent_start) for t in doc] == gold_sent_starts # Also test the results are still the same after IO with make_tempdir() as tmp_dir: nlp.to_disk(tmp_dir) nlp2 = util.load_model_from_path(tmp_dir) doc2 = nlp2(test_text) assert [int(t.is_sent_start) for t in doc2] == gold_sent_starts # Make sure that running pipe twice, or comparing to call, always amounts to the same predictions texts = [ "Just a sentence.", "Then one more sentence about London.", "Here is another one.", "I like London.", ] batch_deps_1 = [doc.to_array([SENT_START]) for doc in nlp.pipe(texts)] batch_deps_2 = [doc.to_array([SENT_START]) for doc in nlp.pipe(texts)] no_batch_deps = [ doc.to_array([SENT_START]) for doc in [nlp(text) for text in texts] ] assert_equal(batch_deps_1, batch_deps_2) assert_equal(batch_deps_1, no_batch_deps) # test internal pipe labels vs. Language.pipe_labels with hidden labels assert nlp.get_pipe("senter").labels == ("I", "S") assert "senter" not in nlp.pipe_labels def test_save_activations(): # Test if activations are correctly added to Doc when requested. nlp = English() senter = cast(TrainablePipe, nlp.add_pipe("senter")) train_examples = [] for t in TRAIN_DATA: train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1])) nlp.initialize(get_examples=lambda: train_examples) nO = senter.model.get_dim("nO") doc = nlp("This is a test.") assert "senter" not in doc.activations senter.save_activations = True doc = nlp("This is a test.") assert "senter" in doc.activations assert set(doc.activations["senter"].keys()) == {"label_ids", "probabilities"} assert doc.activations["senter"]["probabilities"].shape == (5, nO) assert doc.activations["senter"]["label_ids"].shape == (5,)